Plastidial carbonic anhydrase in cotton (Gossypium hirsutum L.): characterization, expression, and role in lipid biosynthesis (open access)

Plastidial carbonic anhydrase in cotton (Gossypium hirsutum L.): characterization, expression, and role in lipid biosynthesis

Recently, plastidial carbonic anhydrase (CA, EC 4.2.1.1) cDNA clones encoding functional CA enzymes were isolated from a nonphotosynthetic cotton tissue. The role of CA in photosynthetic tissues have been well characterized, however there is almost no information for the role of CA in nonphotosynthetic tissues. A survey of relative CA transcript abundance and enzyme activity in different cotton organs revealed that there was substantial CA expression in cotyledons of seedlings and embryos, both nonphotosynthetic tissues. To gain insight into the role(s) of CA, I examined CA expression in cotyledons of seedlings during post-germinative growth at different environmental conditions. CA expression in cotyledons of seedlings increased from 18 h to 72 h after germination in the dark. Seedlings exposed to light had about a 2-fold increase in CA activities when compared with seedlings kept in the dark, whereas relative CA transcript levels were essentially the same. Manipulation of external CO2 environments [zero, ambient (350 ppm), or high (1000 ppm)] modulated coordinately the relative transcript abundance of CA (and rbcS) in cotyledons, but did not affect enzyme activities. On the other hand, regardless of the external CO2 conditions seedlings exposed to light exhibited increase CA activity, concomitant with Rubisco activity and increased …
Date: August 2001
Creator: Hoang, Chau V.
System: The UNT Digital Library
Palmitoyl-acyl Carrier Protein Thioesterase in Cotton (Gossypium hirsutum L.): Biochemical and Molecular Characterization of a Major Mechanism for the Regulation of Palmitic Acid Content (open access)

Palmitoyl-acyl Carrier Protein Thioesterase in Cotton (Gossypium hirsutum L.): Biochemical and Molecular Characterization of a Major Mechanism for the Regulation of Palmitic Acid Content

The relatively high level of palmitic acid (22 mol%) in cottonseeds may be due in part to the activity of a palmitoyl-acyl carrier protein (ACP) thioesterase (PATE). In embryo extracts, PATE activity was highest at the maximum rate of reserve accumulation (oil and protein). The cotton FatB mRNA transcript abundance also peaked during this developmental stage, paralleling the profiles of PATE enzyme activity and seed oil accumulation. A cotton FatB cDNA clone was isolated by screening a cDNA library with a heterologous Arabidopsis FatB probe (Pirtle et al., 1999, Plant and Cell Physiology 40: 155-163). The predicted amino acid sequence of the cotton PATE preprotein had 63% identity to the Arabidopsis FatB thioesterase sequence, suggesting that the cotton cDNA clone probably encoded a FatB-type thioesterase. When acyl-CoA synthetase-minus E. coli mutants expressed the cotton cDNA, an increase in 16:0 free fatty acid content was measured in the culture medium. In addition, acyl-ACP thioesterase activity assays in E. coli lysates revealed that there was a preference for palmitoyl-ACP over oleoyl-ACP in vitro, indicating that the cotton putative FatB cDNA encoded a functional thioesterase with a preference for saturated acyl-ACPs over unsaturated acyl-ACPs (FatA). Overexpression of the FatB cDNA in transgenic cotton …
Date: August 2001
Creator: Huynh, Tu T
System: The UNT Digital Library

Conformational Studies of Myosin and Actin with Calibrated Resonance Energy Transfer

Access: Use of this item is restricted to the UNT Community
Resonance energy transfer was employed to study the conformational changes of actomyosin during ATP hydrolysis. To calibrate the technique, the parameters for resonance energy transfer were defined. With conformational searching algorithms to predict probe orientation, the distances measured by resonance energy transfer are highly consistent with the atomic models, which verified the accuracy and feasibility of resonance energy transfer for structural studies of proteins and oligonucleotides. To study intramyosin distances, resonance energy transfer probes were attached to skeletal myosin's nucleotide site, subfragment-2, and regulatory light chain to examine nucleotide analog-induced structural transitions. The distances between the three positions were measured in the presence of different nucleotide analogs. No distance change was considered to be statistically significant. The measured distance between the regulatory light chain and nucleotide site was consistent with either the atomic model of skeletal myosin subfragment-1 or an average of the three models claimed for different ATP hydrolysis states, which suggested that the neck region was flexible in solution. To examine the participation of actin in the powerstroke process, resonance energy transfer between different sites on actin and myosin was measured in the presence of nucleotide analogs. The efficiencies of energy transfer between myosin catalytic domain and actin …
Date: May 2000
Creator: Xu, Jin
System: The UNT Digital Library
Fluorescence labeling and computational analysis of the strut of myosin's 50 kDa cleft. (open access)

Fluorescence labeling and computational analysis of the strut of myosin's 50 kDa cleft.

In order to understand the structural changes in myosin S1, fluorescence polarization and computational dynamics simulations were used. Dynamics simulations on the S1 motor domain indicated that significant flexibility was present throughout the molecular model. The constrained opening versus closing of the 50 kDa cleft appeared to induce opposite directions of movement in the lever arm. A sequence called the "strut" which traverses the 50 kDa cleft and may play an important role in positioning the actomyosin binding interface during actin binding is thought to be intimately linked to distant structural changes in the myosin's nucleotide cleft and neck regions. To study the dynamics of the strut region, a method of fluorescent labeling of the strut was discovered using the dye CY3. CY3 served as a hydrophobic tag for purification by hydrophobic interaction chromatography which enabled the separation of labeled and unlabeled species of S1 including a fraction labeled specifically at the strut sequence. The high specificity of labeling was verified by proteolytic digestions, gel electrophoresis, and mass spectroscopy. Analysis of the labeled S1 by collisional quenching, fluorescence polarization, and actin-activated ATPase activity were consistent with predictions from structural models of the probe's location. Although the fluorescent intensity of the …
Date: August 2007
Creator: Gawalapu, Ravi Kumar
System: The UNT Digital Library
N-Acylethanolamine Metabolism During Seed Germination: Molecular Identification of a Functional N-Acylethanolamine Amidohydrolase (open access)

N-Acylethanolamine Metabolism During Seed Germination: Molecular Identification of a Functional N-Acylethanolamine Amidohydrolase

N-Acylethanolamines (NAEs) are endogenous lipid metabolites that occur in a variety of dry seeds, and their levels decline rapidly during the first few hours of imbibition (Chapman et al., 1999, Plant Physiol., 120:1157-1164). Biochemical studies supported the existence of an NAE amidohydrolase activity in seeds and seedlings, and efforts were directed toward identification of DNA sequences encoding this enzyme. Mammalian tissues metabolize NAEs via an amidase enzyme designated fatty acid amide hydrolase (FAAH). Based on the characteristic amidase signature sequence in mammalian FAAH, a candidate Arabidopsis cDNA was identified and isolated by reverse transcriptase-PCR. The Arabidopsis cDNA was expressed in E. coli and the recombinant protein indeed hydrolyzed a range of NAEs to free fatty acids and ethanolamine. Kinetic parameters for the recombinant protein were consistent with those properties of the rat FAAH, supporting identification of this Arabidopsis cDNA as a FAAH homologue. Two T-DNA insertional mutant lines with disruptions in the Arabidopsis NAE amidohydrolase gene (At5g64440) were identified. The homozygous mutant seedlings were more sensitive than the wild type to exogenously applied NAE 12:0. Transgenic seedlings overexpressing the NAE amidohydrolase enzyme showed noticeably greater tolerance to NAE 12:0 than wild type seedlings. These results together provide evidence in vitro …
Date: August 2004
Creator: Shrestha, Rhidaya
System: The UNT Digital Library

The structure and function of troponin T upon metal ion binding and the detection of nucleic acid sequence variations.

Access: Use of this item is restricted to the UNT Community
Numerous troponin T (TnT) isoforms are generated by alternative RNA splicing primarily in its NH2-terminal hypervariable region, but the functions of these isoforms are not completely understood. In this dissertation work, calcium and terbium binding behavior of several forms of TnT were investigated by spectroscopic and radioactive techniques. Chicken breast muscle TnT binds calcium and terbium through its NH2-terminal Tx motif (HEEAH)n with high affinity (10-6 mM) and fast on-rate (106 - 107 M-1 s-1). Chicken leg muscle TnT and a human cardiac TnT NH2-terminal fragment, which both lack the Tx motif on their NH2-terminal regions, do not have affinities for calcium in the physiological range. Computational predictions on TnT N47 suggest that the TnT NH2-terminal region might fold into an elongated structure with at least one high affinity metal ion binding pocket comprised primarily of the Tx motif sequence and several lower affinity binding sites. In addition, calcium binding to TnT N47 might alter its conformation and flexibility. Luminescence resonance energy transfer measurements and other experimental observations are consistent with the computational predictions suggesting the computational simulated atomic model is reasonable. TnT mutations are responsible for 15% of familiar hypertrophic cardiomyopathy (FHC) cases with a phenotype of relatively mild …
Date: May 2005
Creator: Zhang, Zhiling
System: The UNT Digital Library
Function of the ENOD8 gene in nodules of Medicago truncatula. (open access)

Function of the ENOD8 gene in nodules of Medicago truncatula.

To elaborate on the function(s) of the ENOD8 gene in the nodules of M. truncatula, several different experimental approaches were used. A census of the ENOD8 genes was first completed indicating that only ENOD8.1 (nt10554-12564 of GenBank AF463407) is highly expressed in nodule tissues. A maltose binding protein-ENOD8 fusion protein was made with an E. coli recombinant system. A variety of biochemical assays were undertaken with the MBP-ENOD8 recombinant protein expressed in E. coli, which did not yield the esterase activity observed for ENOD8 protein nodule fractions purified from M. sativa, tested on general esterase substrates, α-naphthyl acetate, and p-nitrophenylacetate. Attempts were also made to express ENOD8 in a Pichia pastoris system; no ENOD8 protein could be detected from Pichia pastoris strains which were transformed with the ENOD8 expression cassette. Additionally, it was shown that the ENOD8 protein can be recombinantly synthesized by Nicotiana benthamiana in a soluble form, which could be tested for activity toward esterase substrates, bearing resemblance to nodule compounds, such as the Nod factor. Transcription localization studies using an ENOD8 promoter gusA fusion indicated that ENOD8 is expressed in the bacteroid-invaded zone of the nodule. The ENOD8 protein was also detected in that same zone by …
Date: December 2006
Creator: Coque, Laurent
System: The UNT Digital Library
Luminescence Resonance Energy Transfer-Based Modeling of Troponin in the Presence of Myosin and Troponin/Tropomyosin Defining Myosin Binding Target Zones in the Reconstituted Thin Filament (open access)

Luminescence Resonance Energy Transfer-Based Modeling of Troponin in the Presence of Myosin and Troponin/Tropomyosin Defining Myosin Binding Target Zones in the Reconstituted Thin Filament

Mechanistic details on the regulation of striated muscle contraction still need to be determined, particularly the specific structural locations of the elements comprising the thick and thin filaments. Of special interest is the location of the regulatory component, troponin, on the actin filament and how its presence influences the behavior of myosin binding to the thin filament. In the present study: (1) Luminescence resonance energy transfer was used to monitor potential conformational changes in the reconstituted thin filament between the C-terminal region of troponin T and myosin subfragment 1; (2) Location of troponin in previously derived atomic models of the acto-myosin complex was mapped to visualize specific contacts; and (3) Shortened tropomyosin was engineered and protein binding and ATPase assays were performed to study the effect of myosin binding close to the troponin complex. Analysis of the results suggest the following: (1) Irrespective of calcium levels, the C-terminal region of troponin T is located close to myosin loop 3 and a few actin helices that may perturb strong acto-myosin interactions responsible for force production. (2) Atomic models indicate myosin subfragment 1 cannot attain the post- powerstroke state due to the full motion of the lever arm being sterically hindered by …
Date: May 2009
Creator: Patel, Dipesh A.
System: The UNT Digital Library