Design and Validation of an Automated Multiunit Composting System. (open access)

Design and Validation of an Automated Multiunit Composting System.

This thesis covers the design of an automated multiunit composting system (AMUCS) that was constructed to meet the experimental apparatus requirements of the ASTM D5338 standard. The design of the AMUCS is discussed in full detail and validated with two experiments. The first experiment was used to validate the operation of the AMUCS with a 15 day experiment. During this experiment visual observations were made to visually observe degradation. Thermal properties and stability tests were performed to quantify the effects of degradation on the polymer samples, and the carbon metabolized from the degradation of samples was measured. The second experiment used the AMUCS to determine the effect of synthetic clay nanofiller on the aerobic biodegradability behavior of poly (3-hydroxybutyrate-co-3-hydroxyvalerate).
Date: December 2009
Creator: Pickens, Mark Everett
System: The UNT Digital Library
Electrical resistivity as a measure of change of state in substrates: Design, development and validation of a microprocessor-based system. (open access)

Electrical resistivity as a measure of change of state in substrates: Design, development and validation of a microprocessor-based system.

Smart structures are relevant and significant because of their relevance to phenomena such as hazard mitigation, structural health monitoring and energy saving. Electrical resistance could potentially serve as an indicator of structural well-being or damage in the structure. To this end, the development of a microprocessor-based automated resistance measurement system with customized GUI is desired. In this research, a nodal electrical resistance acquisition circuit (NERAC) system was designed. The system hardware interfaces to a laptop, which houses a customized GUI developed using DAQFactory software. Resistance/impedance was measured using DC/AC methods with four-point probes technique, on three substrates. Baseline reading before damage was noted and compared with the resistance measured after damage. The device was calibrated and validated on three different substrates. Resistance measurements were taken from PVDF samples, composite panels and smart concrete. Results conformed to previous work done on these substrates, validating the effective working of the NERAC device.
Date: December 2009
Creator: Le, Dong D.
System: The UNT Digital Library
A Verilog 8051 Soft Core for FPGA Applications (open access)

A Verilog 8051 Soft Core for FPGA Applications

The objective of this thesis was to develop an 8051 microcontroller soft core in the Verilog hardware description language (HDL). Each functional unit of the 8051 microcontroller was developed as a separate module, and tested for functionality using the open-source VHDL Dalton model as benchmark. These modules were then integrated to operate as concurrent processes in the 8051 soft core. The Verilog 8051 soft core was then synthesized in Quartus® II simulation and synthesis environment (Altera Corp., San Jose, CA, www.altera.com) and yielded the expected behavioral response to test programs written in 8051 assembler residing in the v8051 ROM. The design can operate at speeds up to 41 MHz and used only 16% of the FPGA fabric, thus allowing complex systems to be designed on a single chip. Further research and development can be performed on v8051 to enhance performance and functionality.
Date: August 2009
Creator: Rangoonwala, Sakina
System: The UNT Digital Library
Cold-Formed Steel Bolted Connections without Washers on Oversized and Slotted Holes (open access)

Cold-Formed Steel Bolted Connections without Washers on Oversized and Slotted Holes

The use of the cold-formed steel sheet bolted connections without washers is so significant; however, the North American Specifications for the Design of Cold Formed Steel Structural Members, NASPEC, doesn't provide provisions for such connections. The bearing failure of sheet and the shear failure of sheet were considered in this study. For the sheet shear strength, it was found that the NASPEC (2007) design provisions can be used for oversized holes in both single and double shear configurations and for the double shear connections on short slotted holes. For the sheet bearing strength, a new design method was proposed to be used for low and high ductile steel sheets. The method was compared with the NASPEC and the University of Waterloo approach. Washers were still required for single shear connections on short slotted holes. Besides, connections using ASTM A325 bolts yielded higher bearing strength than connections using ASTM A307 bolts.
Date: May 2009
Creator: Sheerah, Ibraheem
System: The UNT Digital Library
Micro-fabrication of a Mach-Zehnder interferometer combining laser direct writing and fountain pen micropatterning for chemical/biological sensing applications. (open access)

Micro-fabrication of a Mach-Zehnder interferometer combining laser direct writing and fountain pen micropatterning for chemical/biological sensing applications.

This research lays the foundation of a highly simplified maskless micro-fabrication technique which involves incorporation of laser direct writing technique combined with fountain pen based micro-patterning method to fabricate polymer-based Mach-Zehnder interferometer sensor arrays' prototype for chemical/biological sensing applications. The research provides methodology that focuses on maskless technology, allowing the definition and modification of geometric patterns through the programming of computer software, in contrast to the conventional mask-based photolithographic approach, in which a photomask must be produced before the device is fabricated. The finished waveguide sensors are evaluated on the basis of their performance as general interferometers. The waveguide developed using the fountain pen-based micro-patterning system is compared with the waveguide developed using the current technique of spin coating method for patterning of upper cladding of the waveguide. The resulting output power profile of the waveguides is generated to confirm their functionality as general interferometers. The results obtained are used to confirm the functionality of the simplified micro-fabrication technique for fabricating integrated optical polymer-based sensors and sensor arrays for chemical/biological sensing applications.
Date: May 2009
Creator: Kallur, Ajay
System: The UNT Digital Library
Effects of Minimum Quantity Lubrication in Drilling 1018 Steel. (open access)

Effects of Minimum Quantity Lubrication in Drilling 1018 Steel.

A common goal for industrial manufacturers is to create a safer working environment and reduce production costs. One common method to achieve this goal is to drastically reduce cutting fluid use in machining. Recent advances in machining technologies have made it possible to perform machining with minimum-quantity lubrication (MQL). Drilling takes a key position in the realization of MQL machining. In this study the effects of using MQL in drilling AISI 1018 steel with HSS tools using a vegetable based lubricant were investigated. A full factorial experiment was conducted and regression models were generated for both surface finish and hole size. Lower surface roughness and higher tool life were observed in the lowest speed and feed rate combination.
Date: December 2008
Creator: Shaikh, Vasim
System: The UNT Digital Library
Hardware and Software Codesign of a JPEG2000 Watermarking Encoder (open access)

Hardware and Software Codesign of a JPEG2000 Watermarking Encoder

Analog technology has been around for a long time. The use of analog technology is necessary since we live in an analog world. However, the transmission and storage of analog technology is more complicated and in many cases less efficient than digital technology. Digital technology, on the other hand, provides fast means to be transmitted and stored. Digital technology continues to grow and it is more widely used than ever before. However, with the advent of new technology that can reproduce digital documents or images with unprecedented accuracy, it poses a risk to the intellectual rights of many artists and also on personal security. One way to protect intellectual rights of digital works is by embedding watermarks in them. The watermarks can be visible or invisible depending on the application and the final objective of the intellectual work. This thesis deals with watermarking images in the discrete wavelet transform domain. The watermarking process was done using the JPEG2000 compression standard as a platform. The hardware implementation was achieved using the ALTERA DSP Builder and SIMULINK software to program the DE2 ALTERA FPGA board. The JPEG2000 color transform and the wavelet transformation blocks were implemented using the hardware-in-the-loop (HIL) configuration.
Date: December 2008
Creator: Mendoza, Jose Antonio
System: The UNT Digital Library
Shear Wall Tests and Finite Element Analysis of Cold-Formed Steel Structural Members. (open access)

Shear Wall Tests and Finite Element Analysis of Cold-Formed Steel Structural Members.

The research was focused on the three major structural elements of a typical cold-formed steel building - shear wall, floor joist, and column. Part 1 of the thesis explored wider options in the steel sheet sheathing for shear walls. An experimental research was conducted on 0.030 in and 0.033 in. (2:1 and 4:1 aspect ratios) and 0.027 in. (2:1 aspect ratio) steel sheet shear walls and the results provided nominal shear strengths for the American Iron and Steel Institute Lateral Design Standard. Part 2 of this thesis optimized the web hole profile for a new generation C-joist, and the web crippling strength was analyzed by finite element analysis. The results indicated an average 43% increase of web crippling strength for the new C-joist compared to the normal C-joist without web hole. To improve the structural efficiency of a cold-formed steel column, a new generation sigma (NGS) shaped column section was developed in Part 3 of this thesis. The geometry of NGS was optimized by the elastic and inelastic analysis using finite strip and finite element analysis. The results showed an average increment in axial compression strength for a single NGS section over a C-section was 117% for a 2 ft. …
Date: December 2008
Creator: Vora, Hitesh
System: The UNT Digital Library
Factors influencing horizontal cracking in continuously reinforced concrete pavements (CRCP). (open access)

Factors influencing horizontal cracking in continuously reinforced concrete pavements (CRCP).

This research presents the results on an experimental investigation to identify the significant factors influencing horizontal cracking in continuously reinforced concrete pavements (CRCP). An in-depth analysis of the microstructure, morphological characteristics of the interfacial transition zone (ITZ) and the observation of cracking using the environmental scanning electron microscope (ESEM) was done. Characterization of oxides using Fourier transform infrared spectroscopy (FTIR) and electron dispersive x-ray spectroscopy (EDS) was also performed. Water to cement ratio (w/c) and rebar temperature had a significant influence on the rebar-concrete bond strength. The 28-day shear strength measurements showed an increase in rebar-concrete bond strength as the water to cement ratio (w/c) was reduced from 0.50 to 0.40. There was a reduction in the peak pullout load as the temperature increased from 14oF to 252oF for the corroded and non-corroded rebar experiments. The corroded rebar pullout test results showed a 20-50 % reduction in bond strength compared to the non-corroded rebars. FTIR measurements indicated a presence of lepidocrocrite (γ -FeOOH) and maghemite (γ -Fe2O3) on the ITZ. ESEM images showed the existence of microcracks as early as three days after casting with the bridging of these cracks between coarse aggregate locations in the interfacial zone propagating through …
Date: August 2008
Creator: Sudoi, Elias K.
System: The UNT Digital Library
Flow Accelerated Corrosion Experience at Comanche Peak Steam Electric Station (open access)

Flow Accelerated Corrosion Experience at Comanche Peak Steam Electric Station

Flow accelerated corrosion (FAC) is a major concern in the power industry as it causes thinning of the pipes by the dissolution of the passive oxide layer formed on the pipe surface. Present research deals with comparing the protection offered by the magnetite (Fe3O4) versus maghemite (γ-Fe2O3) phases thickness loss measurements. Fourier transform infrared spectroscopy (FTIR) is used in distinguishing these two elusive phases of iron oxides. Representative pipes are collected from high pressure steam extraction line of the secondary cycle of unit 2 of Comanche Peak Steam Electric Station (CPSES). Environmental scanning electron microscopy (ESEM) is used for morphological analysis. FTIR and X-ray diffraction (XRD) are used for phase analysis. Morphological analysis showed the presence of porous oxide surfaces with octahedral crystals, scallops and "chimney" like vents. FTIR revealed the predominance of maghemite at the most of the pipe sections. Results of thickness measurements indicate severe thickness loss at the bend areas (extrados) of the pipes.
Date: May 2008
Creator: Nakka, Ravi Kumar
System: The UNT Digital Library
Liquid Nitrogen Propulsion Systems for Automotive Applications: Calculation of Mechanical Efficiency of a Dual, Double-acting Piston Propulsion System (open access)

Liquid Nitrogen Propulsion Systems for Automotive Applications: Calculation of Mechanical Efficiency of a Dual, Double-acting Piston Propulsion System

A dual, double-acting propulsion system is analyzed to determine how efficiently it can convert the potential energy available from liquid nitrogen into useful work. The two double-acting pistons (high- and low-pressure) were analyzed by using a Matlab-Simulink computer simulation to determine their respective mechanical efficiencies. The flow circuit for the entire system was analyzed by using flow circuit analysis software to determine pressure losses throughout the system at the required mass flow rates. The results of the piston simulation indicate that the two pistons analyzed are very efficient at transferring energy into useful work. The flow circuit analysis shows that the system can adequately maintain the mass flow rate requirements of the pistons but also identifies components that have a significant impact on the performance of the system. The results of the analysis indicate that the nitrogen propulsion system meets the intended goals of its designers.
Date: May 2008
Creator: North, Thomas B.
System: The UNT Digital Library
A Study of Laser Direct Writing for All Polymer Single Mode Passive Optical Channel Waveguide Devices (open access)

A Study of Laser Direct Writing for All Polymer Single Mode Passive Optical Channel Waveguide Devices

The objective of this research is to investigate the use of laser direct writing to micro-pattern low loss passive optical channel waveguide devices using a new hybrid organic/inorganic polymer. Review of literature shows previous methods of optical waveguide device patterning as well as application of other non-polymer materials. System setup and design of the waveguide components are discussed. Results show that laser direct writing of the hybrid polymer produce single mode interconnects with a loss of less 1dB/cm.
Date: May 2008
Creator: Borden, Bradley W.
System: The UNT Digital Library
Investigation of the feasibility of non-invasive carbon dioxide detection using spectroscopy in the visible spectrum. (open access)

Investigation of the feasibility of non-invasive carbon dioxide detection using spectroscopy in the visible spectrum.

Pulse oximeters are used in operating rooms and recovery rooms as a monitoring device for oxygen in the respiratory system of the patient. The advantage of pulse oximeters over other methods of oxygen monitoring is that they are easy to use and they are non-invasive, which means it is not necessary break the skin to extract blood for information to be obtained. The standard for the measurement of partial pressure of CO2 and O2 is an arterial blood gas analysis (ABG). However routine monitoring using this method on a continuous basis is impractical since it is slow, painful and invasive. Measuring carbon dioxide is critical to preventing ailments such as carbon dioxide poisoning or hypoxia. The problem is, currently there is no known effective non-invasive method for accurately measuring carbon dioxide in the body to properly assess the adequacy of ventilation. The objective of this study was to experimentally use spectroscopy in the visible spectrum and the principles of operation of a pulse oximeter to incorporate a method of non-invasive real-time carbon dioxide monitoring that is as quick and easy to use.
Date: December 2007
Creator: Marks, Damian
System: The UNT Digital Library
Characterization of Boron Nitride Thin Films on Silicon (100) Wafer. (open access)

Characterization of Boron Nitride Thin Films on Silicon (100) Wafer.

Cubic boron nitride (cBN) thin films offer attractive mechanical and electrical properties. The synthesis of cBN films have been deposited using both physical and chemical vapor deposition methods, which generate internal residual, stresses that result in delamination of the film from substrates. Boron nitride films were deposited using electron beam evaporation without bias voltage and nitrogen bombardment (to reduce stresses) were characterize using FTIR, XRD, SEM, EDS, TEM, and AFM techniques. In addition, a pin-on-disk tribological test was used to measure coefficient of friction. Results indicated that samples deposited at 400°C contained higher cubic phase of BN compared to those films deposited at room temperature. A BN film containing cubic phase deposited at 400°C for 2 hours showed 0.1 friction coefficient.
Date: August 2007
Creator: Maranon, Walter
System: The UNT Digital Library
FPGA Prototyping of a Watermarking Algorithm for MPEG-4 (open access)

FPGA Prototyping of a Watermarking Algorithm for MPEG-4

In the immediate future, multimedia product distribution through the Internet will become main stream. However, it can also have the side effect of unauthorized duplication and distribution of multimedia products. That effect could be a critical challenge to the legal ownership of copyright and intellectual property. Many schemes have been proposed to address these issues; one is digital watermarking which is appropriate for image and video copyright protection. Videos distributed via the Internet must be processed by compression for low bit rate, due to bandwidth limitations. The most widely adapted video compression standard is MPEG-4. Discrete cosine transform (DCT) domain watermarking is a secure algorithm which could survive video compression procedures and, most importantly, attacks attempting to remove the watermark, with a visibly degraded video quality result after the watermark attacks. For a commercial broadcasting video system, real-time response is always required. For this reason, an FPGA hardware implementation is studied in this work. This thesis deals with video compression, watermarking algorithms and their hardware implementation with FPGAs. A prototyping VLSI architecture will implement video compression and watermarking algorithms with the FPGA. The prototype is evaluated with video and watermarking quality metrics. Finally, it is seen that the video qualities …
Date: May 2007
Creator: Cai, Wei
System: The UNT Digital Library
Preliminary design of a cryogenic thermoelectric generator. (open access)

Preliminary design of a cryogenic thermoelectric generator.

A cryogenic thermoelectric generator is proposed to increase the efficiency of a vehicle propulsion system that uses liquid nitrogen as its fuel. The proposed design captures some of the heat required for vaporizing or initial heating of the liquid nitrogen to produce electricity. The thermoelectric generator uses pressurized liquid nitrogen as its cold reservoir and ambient air as the high-temperature reservoir to generate power. This study concentrated on the selection of thermoelectric materials whose properties would result in the highest efficiency over the operating temperature range and on estimating the initial size of the generator. The preliminary selection of materials is based upon their figure of merit at the operating temperatures. The results of this preliminary design investigation of the cryogenic thermoelectric generator indicate that sufficient additional energy can be used to increase overall efficiency of the thermodynamic cycle of a vehicle propulsion system.
Date: May 2007
Creator: Sivapurapu, Sai Vinay Kumar
System: The UNT Digital Library

Evaluation of dynamic and static electrical characteristics for the DY8 and YI8 process gallium diodes in comparison to the DI8 process boron diodes.

Access: Use of this item is restricted to the UNT Community
A rectifier is an electrical device, comprising one or more semiconductor devices arranged for converting alternating current to direct current by blocking the negative or positive portion of the waveform. The purpose of this study would be to evaluate dynamic and static electrical characteristics of rectifier chips fabricated with (a) DY8 process and (b) YI8 process and compare them with the existing DI8 process rectifiers. These new rectifiers were tested to compare their performance to meet or exceed requirements of lower forward voltages, leakage currents, reverse recovery time, and greater sustainability at higher temperatures compared to diodes manufactured using boron as base (DI8 process diodes) for similar input variables.
Date: December 2006
Creator: Dhoopati, Swathi
System: The UNT Digital Library
MBE Growth and Instrumentation (open access)

MBE Growth and Instrumentation

This thesis mainly aims at application of principles of engineering technology in the field of molecular beam epitaxy (MBE). MBE is a versatile technique for growing epitaxial thin films of semiconductors and metals by impinging molecular beams of atoms onto a heated substrate under ultra-high vacuum (UHV) conditions. Here, a LabVIEW® (laboratory virtual instrument engineering workbench) software (National Instruments Corp., http://www.ni.com/legal/termsofuse/unitedstates/usH) program is developed that would form the basis of a real-time control system that would transform MBE into a true-production technology. Growth conditions can be monitored in real-time with the help of reflection high energy electron diffraction (RHEED) technique. The period of one RHEED oscillation corresponds exactly to the growth of one monolayer of atoms of the semiconductor material. The PCI-1409 frame grabber card supplied by National Instruments is used in conjunction with the LabVIEW software to capture the RHEED images and capture the intensity of RHEED oscillations. The intensity values are written to a text file and plotted in the form of a graph. A fast Fourier transform of these oscillations gives the growth rate of the epi-wafer being grown. All the data being captured by the LabVIEW program can be saved to file forming a growth pedigree …
Date: May 2006
Creator: Tarigopula, Sriteja
System: The UNT Digital Library
Propagation analysis of a 900 MHz spread spectrum centralized traffic signal control system. (open access)

Propagation analysis of a 900 MHz spread spectrum centralized traffic signal control system.

The objective of this research is to investigate different propagation models to determine if specified models accurately predict received signal levels for short path 900 MHz spread spectrum radio systems. The City of Denton, Texas provided data and physical facilities used in the course of this study. The literature review indicates that propagation models have not been studied specifically for short path spread spectrum radio systems. This work should provide guidelines and be a useful example for planning and implementing such radio systems. The propagation model involves the following considerations: analysis of intervening terrain, path length, and fixed system gains and losses.
Date: May 2006
Creator: Urban, Brian L.
System: The UNT Digital Library

Development of a Hybrid Molecular Ultraviolet Photodetector based on Guanosine Derivatives

Access: Use of this item is restricted to the UNT Community
Modern studies on charge transfer reaction and conductivity measurements of DNA have shown that the electrical behavior of DNA ranges from that of an insulator to that of a wide bandgap semiconductor. Based on this property of DNA, a metal-semiconductor-metal photodetector is fabricated using a self-assembled layer of deoxyguanosine derivative (DNA base) deposited between gold electrodes. The electrodes are lithographically designed on a GaN substrate separated by a distance L (50nm < L < 100nm). This work examines the electrical and optical properties of such wide-bandgap semiconductor based biomaterial systems for their potential application as photodetectors in the UV region wherein most of the biological agents emit. The objective of this study was to develop a biomolecular electronic device and design an experimental setup for electrical and optical characterization of a novel hybrid molecular optoelectronic material system. AFM results proved the usage of Ga-Polar substrate in conjugation with DG molecules to be used as a potential electronic based sensor. A two-terminal nanoscale biomolectronic diode has been fabricated showing efficient rectification ratio. A nanoscale integrated ultraviolet photodetector (of dimensions less than 100 nm) has been fabricated with a cut-off wavelength at ~ 320 nm.
Date: December 2005
Creator: Liddar, Harsheetal
System: The UNT Digital Library
Indoor Propagation Modeling at 2.4 GHz for IEEE 802.11 Networks (open access)

Indoor Propagation Modeling at 2.4 GHz for IEEE 802.11 Networks

Indoor use of wireless systems poses one of the biggest design challenges. It is difficult to predict the propagation of a radio frequency wave in an indoor environment. To assist in deploying the above systems, characterization of the indoor radio propagation channel is essential. The contributions of this work are two-folds. First, in order to build a model, extensive field strength measurements are carried out inside two different buildings. Then, path loss exponents from log-distance path loss model and standard deviations from log-normal shadowing, which statistically describe the path loss models for a different transmitter receiver separations and scenarios, are determined. The purpose of this study is to characterize the indoor channel for 802.11 wireless local area networks at 2.4 GHz frequency. This thesis presents a channel model based on measurements conducted in commonly found scenarios in buildings. These scenarios include closed corridor, open corridor, classroom, and computer lab. Path loss equations are determined using log-distance path loss model and log-normal shadowing. The chi-square test statistic values for each access point are calculated to prove that the observed fading is a normal distribution at 5% significance level. Finally, the propagation models from the two buildings are compared to validate the …
Date: December 2005
Creator: Tummala, Dinesh
System: The UNT Digital Library

Surface Plasmon Based Nanophotonic Optical Emitters

Access: Use of this item is restricted to the UNT Community
Group- III nitride based semiconductors have emerged as the leading material for short wavelength optoelectronic devices. The InGaN alloy system forms a continuous and direct bandgap semiconductor spanning ultraviolet (UV) to blue/green wavelengths. An ideal and highly efficient light-emitting device can be designed by enhancing the spontaneous emission rate. This thesis deals with the design and fabrication of a visible light-emitting device using GaN/InGaN single quantum well (SQW) system with enhanced spontaneous emission. To increase the emission efficiency, layers of different metals, usually noble metals like silver, gold and aluminum are deposited on GaN/InGaN SQWs using metal evaporator. Surface characterization of metal-coated GaN/InGaN SQW samples was carried out using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Photoluminescence is used as a tool for optical characterization to study the enhancement in the light emitting structures. This thesis also compares characteristics of different metals on GaN/InGaN SQW system thus allowing selection of the most appropriate material for a particular application. It was found out that photons from the light emitter couple more to the surface plasmons if the bandgap of former is close to the surface plasmon resonant energy of particular metal. Absorption of light due to gold reduces the …
Date: December 2005
Creator: Vemuri, Padma Rekha
System: The UNT Digital Library
FEM of nanoindentation on micro- and nanocrystalline Ni: Analysis of factors affecting hardness and modulus values. (open access)

FEM of nanoindentation on micro- and nanocrystalline Ni: Analysis of factors affecting hardness and modulus values.

Nanoindentation is a widely used technique to measure the mechanical properties of films with thickness ranging from nanometers to micrometers. A much better understanding of the contact mechanics is obtained mostly through finite element modeling. The experiments were modeled using the software package Nano SP1 that is based on COSMOSM™ (Structural Research & Analysis Corp, www.cosmosm.com), a finite element code. The fundamental material properties affecting pile-up are the ratio of the effective modulus to yield stress Eeff/σ and the work hardening behavior. Two separate cases of work hardening rates were considered; one with no work hardening rate and other with a linear work hardening rate. Specifically, it is observed that pile up is large only when hf/hmax is close to one and degree of work hardening rate is small. It should also be noted that when hf/hmax < 0.7 very little pile-up is observed no matter what the work-hardening behavior of the material. When pile-up occurs the contact area is greater than that predicted by the experimental methods and both the hardness and modulus are overestimated. In this report the amount by which these properties are overestimated are studied and got to be around 22% approx. Bluntness of the tip …
Date: August 2005
Creator: Pothapragada, Raja Mahesh
System: The UNT Digital Library

Nodal Resistance Measurement System

Access: Use of this item is restricted to the UNT Community
The latest development in the measurement techniques has resulted in fast improvements in the instruments used for measurement of various electrical quantities. A common problem in such instruments is the automation of acquiring, retrieving and controlling the measurements by a computer or a laptop. In this study, nodal resistance measurement (NRM) system is developed to solve the above problem. The purpose of this study is to design and develop a compact electronic board, which measures electrical resistance, and a computer or a laptop controls the board. For the above purpose, surface nodal points are created on the surface of the sample electrically conductive material. The nodal points are connected to the compact electronic board and this board is connected to the computer. The user selects the nodal points, from the computer, between which the NRM system measures the electrical resistance and displays the measured quantity on the computer.
Date: May 2005
Creator: Putta, Sunil Kumar
System: The UNT Digital Library