States

Language

Energy Harvesting Wireless Piezoelectric Resonant Force Sensor (open access)

Energy Harvesting Wireless Piezoelectric Resonant Force Sensor

The piezoelectric energy harvester has become a new powering option for some low-power electronic devices such as MEMS (Micro Electrical Mechanical System) sensors. Piezoelectric materials can collect the ambient vibrations energy and convert it to electrical energy. This thesis is intended to demonstrate the behavior of a piezoelectric energy harvester system at elevated temperature from room temperature up to 82°C, and compares the system’s performance using different piezoelectric materials. The systems are structured with a Lead Magnesium Niobate-Lead Titanate (PMN-PT) single crystal patch bonded to an aluminum cantilever beam, Lead Indium Niobate-Lead Magnesium Niobate-Lead Titanate (PIN-PMN-PT) single crystal patch bonded to an aluminum cantilever beam and a bimorph cantilever beam which is made of Lead Zirconate Titanate (PZT). The results of this experimental study show the effects of the temperature on the operation frequency and output power of the piezoelectric energy harvesting system. The harvested electrical energy has been stored in storage circuits including a battery. Then, the stored energy has been used to power up the other part of the system, a wireless resonator force sensor, which uses frequency conversion techniques to convert the sensor’s ultrasonic signal to a microwave signal in order to transmit the signal wirelessly.
Date: December 2013
Creator: Ahmadi, Mehdi
System: The UNT Digital Library

Development of a Coaxiality Indicator

Access: Use of this item is restricted to the UNT Community
The geometric dimensioning and tolerancing concept of coaxiality is often required by design engineers for balance of rotating parts and precision mating parts. In current practice, it is difficult for manufacturers to measure coaxiality quickly and inexpensively. This study examines feasibility of a manually-operated, mechanical device combined with formulae to indicate coaxiality of a test specimen. The author designs, fabricates, and tests the system for measuring coaxiality of holes machined in a steel test piece. Gage Repeatability and Reproducibility (gage R&R) and univariate analysis of variance is performed in accordance with Measurement System Analysis published by AIAG. Results indicate significant design flaws exist in the current configuration of the device; observed values vary greatly with operator technique. Suggestions for device improvements conclude the research.
Date: December 1999
Creator: Arendsee, Wayne C.
System: The UNT Digital Library

Design Method of Cold-Formed Steel Framed Shear Wall Sheathed by Structural Concrete Panel

Access: Use of this item is restricted to the UNT Community
The objective of this research is developing a new method of design for cold-formed steel framed shear wall sheathed by ¾" thick USG structural panel concrete subfloor using a predictive analytical model and comparing the results obtained from the model with those achieved from real testing to verify the analytical model and predicted lateral load-carrying capacity resulted from that. Moreover, investigating the impact of various screw spacings on shear wall design parameter such as ultimate strength, yield strength, elastic stiffness, ductility ratio and amount of energy dissipation is another purpose of this research.
Date: December 2019
Creator: Ashkanalam, Aida
System: The UNT Digital Library
Development and Test of High-Temperature Piezoelectric Wafer Active Sensors for Structural Health Monitoring (open access)

Development and Test of High-Temperature Piezoelectric Wafer Active Sensors for Structural Health Monitoring

High-temperature piezoelectric wafer active sensors (HT-PWAS) have been developed for structure health monitoring at hazard environments for decades. Different candidates have previously been tested under 270 °C and a new piezoelectric material langasite (LGS) was chosen here for a pilot study up to 700 °C. A preliminary study was performed to develop a high temperature sensor that utilizes langasite material. The Electromechanical impedance (E/M) method was chosen to detect the piezoelectric property. Experiments that verify the basic piezoelectric property of LGS at high temperature environments were carried out. Further validations were conducted by testing structures with attached LGS sensors at elevated temperature. Additionally, a detection system simulating the working process of LGS monitoring system was developed with PZT material at room temperature. This thesis, for the first time, (to the best of author’s knowledge) presents that langasite is ideal for making piezoelectric wafer active sensors for high temperature structure health monitoring applications.
Date: December 2014
Creator: Bao, Yuanye
System: The UNT Digital Library
Susceptibility of a digital turbine control system to IEEE 802.11 compliant emissions. (open access)

Susceptibility of a digital turbine control system to IEEE 802.11 compliant emissions.

Within the nuclear industry, there have been numerous instances of radio transmissions interfering with sensitive plant equipment. Instances documented vary from minor instrument fluctuations to major plant transients including reactor trips. With the nuclear power industry moving toward digital technologies for control and reactor protection systems, concern exists regarding their potential susceptibility to contemporary wireless telecommunications technologies. This study evaluates the susceptibility of Comanche Peak's planned turbine controls upgrade to IEEE 802.11 compliant wireless radio emissions. The study includes a review of previous research, industry emissions standards, and technical overview of the various IEEE 802.11 protocols and details the testing methodology utilized to evaluate the digital control system. The results of this study concluded that the subject digital control system was unaffected by IEEE 802.11 compliant emissions even when the transmitter was in direct contact with sensitive components.
Date: December 2003
Creator: Carter, Clinton E.
System: The UNT Digital Library
Microfluidic-Based Fabrication of Photonic Microlasers for Biomedical Applications (open access)

Microfluidic-Based Fabrication of Photonic Microlasers for Biomedical Applications

Optical microlasers have been used in different engineering fields and for sensing various applications. They have been used in biomedical fields in applications such as for detecting protein biomarkers for cancer and for measuring biomechanical properties. The goal of this work is to propose a microfluidic-based fabrication method for fabricating optical polymer based microlasers, which has advantages, over current methods, such us the fabrication time, the contained cost, and the reproducibility of the microlaser's size. The microfluidic setup consisted of microfluidic pumps and a flow focusing droplet generator chip made of polydimethylsiloxane (PDMS). Parameters such as the flow rate (Q) and the pressure (P) of both continuous and dispersed phases are taken into account for determining the microlaser's size and a MATLAB imaging tool is used to reduce the microlaser's diameter estimation. In addition, two applications are discussed: i) electric field measurements via resonator doped with Di-Anepps-4 voltage sensitive dye, and ii) strain measurements in a 3D printed bone-like structure to mimic biomedical implantable sensors.
Date: December 2019
Creator: Cavazos, Omar
System: The UNT Digital Library
Cost Savings Realized Through Proper Sizing of an Excessive Instrument Air System. (open access)

Cost Savings Realized Through Proper Sizing of an Excessive Instrument Air System.

The purpose of this research was to determine if installing a smaller air compressor could reduce the electrical usage of a large semiconductor manufacturing plant. A 200 horsepower Atlas Copco compressor was installed with the existing 500 horsepower Ingersoll-Rand compressors. Testing was conducted during the regular manufacturing process at MEMC Southwest in Sherman, Texas. Analysis of the data found that installing the new compressor could reduce electrical consumption. The study also found there are specific operational setpoints that allow the compressor to operate more efficiently.
Date: December 2003
Creator: Condron, Ewell D.
System: The UNT Digital Library
Shear and Bending Strength of Cold-Formed Steel Solid Wall Panels Using Corrugated Steel Sheets for Mobile Shelters (open access)

Shear and Bending Strength of Cold-Formed Steel Solid Wall Panels Using Corrugated Steel Sheets for Mobile Shelters

The objective of this thesis is to determine if the single sided resistance spot weld (RSW) can be used as a feasible connection method for cold formed steel (CFS) shear walls subject to lateral force of either seismic or wind loads on mobile shelters. The research consisted of three phases which include: a design as a 3D BIM model, connection tests of the resistance spot weld, and full-scale testing of the designed solid wall panels. The shear wall testing was conducted on specimens with both resistance spot weld and self-drilling screws and the results from tests gave a direct comparison of these connections when the solid wall panel was subjected to in-plane shear forces. The full-scale tests also included 4-point bending tests which was designed to investigate the wall panel's resistance to the lateral loads applied perpendicularly to the surface. The research discovered that the singled sided resistance spot weld achieved similar performance as the self-drilling screws in the applications of CFS wall panels for mobile shelters. The proposed single sided resistance spot weld has advantages of low cost, no added weight, fast fabrication, and it is a feasible connection method for CFS wall panels.
Date: December 2017
Creator: Derrick, Nathan Lynn
System: The UNT Digital Library

Evaluation of dynamic and static electrical characteristics for the DY8 and YI8 process gallium diodes in comparison to the DI8 process boron diodes.

Access: Use of this item is restricted to the UNT Community
A rectifier is an electrical device, comprising one or more semiconductor devices arranged for converting alternating current to direct current by blocking the negative or positive portion of the waveform. The purpose of this study would be to evaluate dynamic and static electrical characteristics of rectifier chips fabricated with (a) DY8 process and (b) YI8 process and compare them with the existing DI8 process rectifiers. These new rectifiers were tested to compare their performance to meet or exceed requirements of lower forward voltages, leakage currents, reverse recovery time, and greater sustainability at higher temperatures compared to diodes manufactured using boron as base (DI8 process diodes) for similar input variables.
Date: December 2006
Creator: Dhoopati, Swathi
System: The UNT Digital Library
Effect of Amines as Corrosion Inhibitors for a Low Carbon Steel in Power Industry (open access)

Effect of Amines as Corrosion Inhibitors for a Low Carbon Steel in Power Industry

Commonly used amines in power industry, including morpholine, DBU (1,8-diazabicyclo[5.4.0]undec-7-ene), and DMA (dimethylallylamine) were evaluated for their effect on AISI 1018 steel at 250oF. Samples were exposed to an autoclave containing amine added aqueous solution at pH of 9.5 for 1, 2, 4, 6, 8, and 12 hours. Morphology studies were carried using scanning electron microscope (SEM), phase analysis was done utilizing Fourier transform infrared spectroscopy (FTIR), and weight loss was performed to assess kinetics of oxidation. Control samples showed the highest metal dissolution rate. DBU showed the best performance in metal protection and SEM indicated the presence of a free-crack layer formed by fine particles in that set. FTIR showed that DBU apparently favored the formation of magnetite. It is believed that fine particles impede intrusion of aggressive ions into the metal surface by forming a barrier layer. FTIR demonstrated that DMA formed more oxyhydroxides, whereas morpholine presented magnetite to hematite transformation as early as 2 hours. SEM revealed that control and DMA produced acicular particles characteristic of oxyhydroxides while morpholine and DBU presented more equiaxed particles.
Date: December 2004
Creator: Díaz, Jorge G.
System: The UNT Digital Library
Fabrication and Testing of Biomimetic Microstructures for Walkway Tribometers (open access)

Fabrication and Testing of Biomimetic Microstructures for Walkway Tribometers

The main objective of this work is to give contribution in both additive manufacturing (AM) and tribometry derived from the application and study of materials available with the use of biomimetic designs. Additional contributions are determining what effects treatments for flooring surfaces may have on the dynamic coefficient of friction and the effects of these products on common surfaces. The validity of the proposed methodology for a proof of concept was demonstrated by comparing measured dynamic coefficient of friction for designs using standardized equipment and comparing these values to plantar skin tested using an accepted and standardized testing method that has been extensively researched and validated. Initial biomimetic designs and characteristics unique to each design were researched and compared. Eleven designs were selected to be fabricated, tested, and compared to select the most desirable applications for further investigation. Research into potential treatments commercially available for use was done to determine the efficacy of these products. Prototype sensor designs were selected and fabricated using direct light processing (DLP) technology. Examination of the measured values was done through an analysis of the variances in the response variable and comparisons using Fisher and Tukey pairwise comparison method. Future work recommendations are provided for …
Date: December 2019
Creator: Haney, Christopher Willard
System: The UNT Digital Library
Dynamic Behaviors of Historical Wrought Iron Truss Bridges – a Field Testing Case Study (open access)

Dynamic Behaviors of Historical Wrought Iron Truss Bridges – a Field Testing Case Study

Civil infrastructure throughout the world serves as main arteries for commerce and transportation, commonly forming the backbone of many societies. Bridges have been and remain a crucial part of the success of these civil networks. However, the crucial elements have been built over centuries and have been subject to generations of use. Many current bridges have outlived their intended service life or have been retrofitted to carry additional loads over their original design. A large number of these historic bridges are still in everyday use and their condition needs to be monitored for public safety. Transportation infrastructure authorities have implemented various inspection and management programs throughout the world, mainly visual inspections. However, careful visual inspections can provide valuable information but it has limitations in that it provides no actual stress-strain information to determine structural soundness. Structural Health Monitoring (SHM) has been a growing area of research as officials need to asses and triage the aging infrastructure with methods that provide measurable response information to determine the health of the structure. A rapid improvement in technology has allowed researchers to start using new sensors and algorithms to understand the structural parameters of tested structures due to known and unknown loading scenarios. …
Date: December 2015
Creator: Hedric, Andrew C.
System: The UNT Digital Library
Direct Immersion Cooling Via Nucleate Boiling of HFE-7100 Dielectric Liquid on Hydrophobic and Hydrophilic Surfaces (open access)

Direct Immersion Cooling Via Nucleate Boiling of HFE-7100 Dielectric Liquid on Hydrophobic and Hydrophilic Surfaces

This study experimentally investigated the effect of hydrophobic and hydrophilic surfaces characteristics on nucleate boiling heat transfer performance for the application of direct immersion cooling of electronics. A dielectric liquid, HFE – 7100 was used as the working fluid in the saturated boiling tests. Twelve types of 1-cm2 copper heater samples, simulating high heat flux components, featured reference smooth copper surface, fully and patterned hydrophobic surface and fully and patterned hydrophilic surfaces. Hydrophobic samples were prepared by applying a thin Teflon coating following photolithography techniques, while the hydrophilic TiO2 thin films were made through a two step approach involving layer by layer self assembly and liquid phase deposition processes. Patterned surfaces had circular dots with sizes between 40 – 250 μm. Based on additional data, both hydrophobic and hydrophilic surfaces improved nucleate boiling performance that is evaluated in terms of boiling incipience, heat transfer coefficient and critical heat flux (CHF) level. The best results, considering the smooth copper surface as the reference, were achieved by the surfaces that have a mixture of hydrophobic/hydrophilic coatings, providing: (a) early transition to boiling regime and with eliminated temperature overshoot phenomena at boiling incipience, (b) up to 58.5% higher heat transfer coefficients, and (c) …
Date: December 2014
Creator: Joshua, Nihal E.
System: The UNT Digital Library
The Measurement of the Third-order Elastic Constants for La3ga5sio14 (Lgs) and La3ga55ta05o14 (Lgt) Single Crystal (open access)

The Measurement of the Third-order Elastic Constants for La3ga5sio14 (Lgs) and La3ga55ta05o14 (Lgt) Single Crystal

Recently, the development of electronic technology towards higher frequencies and larger band widths has led to interest in finding new piezoelectric materials, which could be used to make filters with larger pass band widths and oscillators with better frequency stability. Langasite (La3Ga5SiO14, LGS) and its isomorphs have enticed considerable attention of researchers as a potential substrate material for piezoelectric device applications because of its high frequency stability and fairly good electromechanical coupling factors for acoustic wave devices. Nonlinear effect including drive level dependence, mode coupling, force-frequency effect and electroelasic effect are critical for the design of these devices. Third-order elastic constants (TOEC) play an important role in a quantitative analysis of these nonlinear effects. In particular these elastic constants are of great importance when the BAW (Bulk Acoustic Wave) and SAW (Surface Acoustic Wave) sensors of force, acceleration and so on are designed. Until now Langasite (LGS) and Langatate (LGT) crystal resonators have been qualified in terms of quality factor, temperature effect, isochronism defect and material quality. One of the most important advantages of those crystals is that they will not undergo phase transitions up to its melting temperature of 1450°. Presently there is no data on TOEC of LGT …
Date: December 2013
Creator: Karim, Md Afzalul
System: The UNT Digital Library
Comparative Analysis and Implementation of High Data Rate Wireless Sensor Network Simulation Frameworks (open access)

Comparative Analysis and Implementation of High Data Rate Wireless Sensor Network Simulation Frameworks

This thesis focuses on developing a high data rate wireless sensor network framework that could be integrated with hardware prototypes to monitor structural health of buildings. In order to better understand the wireless sensor network architecture and its consideration in structural health monitoring, a detailed literature review on wireless sensor networks has been carried out. Through research, it was found that there are numerous simulation software packages available for wireless sensor network simulation. One suitable software was selected for modelling the framework. Research showed that Matlab/Simulink was the most suitable environment, and as a result, a wireless sensor network framework was designed in Matlab/Simulink. Further, the thesis illustrates modeling of a simple accelerometer sensor, such as those used in wireless sensor networks in Matlab/Simulink using a mathematical description. Finally, the framework operation is demonstrated with 10 nodes, and data integrity is analyzed with cyclic redundancy check and transmission error rate calculations.
Date: December 2015
Creator: Laguduva Rajaram, Madhupreetha
System: The UNT Digital Library
Electrical resistivity as a measure of change of state in substrates: Design, development and validation of a microprocessor-based system. (open access)

Electrical resistivity as a measure of change of state in substrates: Design, development and validation of a microprocessor-based system.

Smart structures are relevant and significant because of their relevance to phenomena such as hazard mitigation, structural health monitoring and energy saving. Electrical resistance could potentially serve as an indicator of structural well-being or damage in the structure. To this end, the development of a microprocessor-based automated resistance measurement system with customized GUI is desired. In this research, a nodal electrical resistance acquisition circuit (NERAC) system was designed. The system hardware interfaces to a laptop, which houses a customized GUI developed using DAQFactory software. Resistance/impedance was measured using DC/AC methods with four-point probes technique, on three substrates. Baseline reading before damage was noted and compared with the resistance measured after damage. The device was calibrated and validated on three different substrates. Resistance measurements were taken from PVDF samples, composite panels and smart concrete. Results conformed to previous work done on these substrates, validating the effective working of the NERAC device.
Date: December 2009
Creator: Le, Dong D.
System: The UNT Digital Library

Development of a Hybrid Molecular Ultraviolet Photodetector based on Guanosine Derivatives

Access: Use of this item is restricted to the UNT Community
Modern studies on charge transfer reaction and conductivity measurements of DNA have shown that the electrical behavior of DNA ranges from that of an insulator to that of a wide bandgap semiconductor. Based on this property of DNA, a metal-semiconductor-metal photodetector is fabricated using a self-assembled layer of deoxyguanosine derivative (DNA base) deposited between gold electrodes. The electrodes are lithographically designed on a GaN substrate separated by a distance L (50nm < L < 100nm). This work examines the electrical and optical properties of such wide-bandgap semiconductor based biomaterial systems for their potential application as photodetectors in the UV region wherein most of the biological agents emit. The objective of this study was to develop a biomolecular electronic device and design an experimental setup for electrical and optical characterization of a novel hybrid molecular optoelectronic material system. AFM results proved the usage of Ga-Polar substrate in conjugation with DG molecules to be used as a potential electronic based sensor. A two-terminal nanoscale biomolectronic diode has been fabricated showing efficient rectification ratio. A nanoscale integrated ultraviolet photodetector (of dimensions less than 100 nm) has been fabricated with a cut-off wavelength at ~ 320 nm.
Date: December 2005
Creator: Liddar, Harsheetal
System: The UNT Digital Library
Investigation of the feasibility of non-invasive carbon dioxide detection using spectroscopy in the visible spectrum. (open access)

Investigation of the feasibility of non-invasive carbon dioxide detection using spectroscopy in the visible spectrum.

Pulse oximeters are used in operating rooms and recovery rooms as a monitoring device for oxygen in the respiratory system of the patient. The advantage of pulse oximeters over other methods of oxygen monitoring is that they are easy to use and they are non-invasive, which means it is not necessary break the skin to extract blood for information to be obtained. The standard for the measurement of partial pressure of CO2 and O2 is an arterial blood gas analysis (ABG). However routine monitoring using this method on a continuous basis is impractical since it is slow, painful and invasive. Measuring carbon dioxide is critical to preventing ailments such as carbon dioxide poisoning or hypoxia. The problem is, currently there is no known effective non-invasive method for accurately measuring carbon dioxide in the body to properly assess the adequacy of ventilation. The objective of this study was to experimentally use spectroscopy in the visible spectrum and the principles of operation of a pulse oximeter to incorporate a method of non-invasive real-time carbon dioxide monitoring that is as quick and easy to use.
Date: December 2007
Creator: Marks, Damian
System: The UNT Digital Library
Hardware and Software Codesign of a JPEG2000 Watermarking Encoder (open access)

Hardware and Software Codesign of a JPEG2000 Watermarking Encoder

Analog technology has been around for a long time. The use of analog technology is necessary since we live in an analog world. However, the transmission and storage of analog technology is more complicated and in many cases less efficient than digital technology. Digital technology, on the other hand, provides fast means to be transmitted and stored. Digital technology continues to grow and it is more widely used than ever before. However, with the advent of new technology that can reproduce digital documents or images with unprecedented accuracy, it poses a risk to the intellectual rights of many artists and also on personal security. One way to protect intellectual rights of digital works is by embedding watermarks in them. The watermarks can be visible or invisible depending on the application and the final objective of the intellectual work. This thesis deals with watermarking images in the discrete wavelet transform domain. The watermarking process was done using the JPEG2000 compression standard as a platform. The hardware implementation was achieved using the ALTERA DSP Builder and SIMULINK software to program the DE2 ALTERA FPGA board. The JPEG2000 color transform and the wavelet transformation blocks were implemented using the hardware-in-the-loop (HIL) configuration.
Date: December 2008
Creator: Mendoza, Jose Antonio
System: The UNT Digital Library
Two-Phase Spray Cooling with Water/2-Propanol Binary Mixtures for High Heat Flux Focal Source (open access)

Two-Phase Spray Cooling with Water/2-Propanol Binary Mixtures for High Heat Flux Focal Source

Two-phase spray cooling has been an emerging thermal management technique offering high heat transfer coefficients and critical heat flux levels, near-uniform surface temperatures, and efficient coolant usage that enables to design of compact and lightweight systems. Due to these capabilities, spray cooling is a promising approach for high heat flux applications in computing, power electronics, and optics. Two-phase spray cooling inherently depends on saturation temperature-pressure relationships of the working fluid to take advantage of high heat transfer rates associated with liquid-vapor phase change. When a certain application requires strict temperature and/or pressure conditions, thermo-physical properties of the working fluid play a critical role in attaining proper efficiency, reliability, or packaging structure. However, some of the commonly used single-component working fluids have relatively poor properties and heat transfer performance. For example, water is the best coolant in terms of properties, yet in certain applications where the system operates at low temperature ambient, it cannot be implemented due to freezing risk. The common solution for this problem is to use the antifreeze mixtures (binary mixtures of water and alcohol) to reduce the freezing point. In such cases, utilizing binary mixtures to tune working fluid properties becomes an alternative approach. This study has …
Date: December 2016
Creator: Obuladinne, Sai Sujith
System: The UNT Digital Library
Design and Validation of an Automated Multiunit Composting System. (open access)

Design and Validation of an Automated Multiunit Composting System.

This thesis covers the design of an automated multiunit composting system (AMUCS) that was constructed to meet the experimental apparatus requirements of the ASTM D5338 standard. The design of the AMUCS is discussed in full detail and validated with two experiments. The first experiment was used to validate the operation of the AMUCS with a 15 day experiment. During this experiment visual observations were made to visually observe degradation. Thermal properties and stability tests were performed to quantify the effects of degradation on the polymer samples, and the carbon metabolized from the degradation of samples was measured. The second experiment used the AMUCS to determine the effect of synthetic clay nanofiller on the aerobic biodegradability behavior of poly (3-hydroxybutyrate-co-3-hydroxyvalerate).
Date: December 2009
Creator: Pickens, Mark Everett
System: The UNT Digital Library

Effect of Engineered Surfaces on Valve Performance

Access: Use of this item is restricted to the UNT Community
Performance of air operated valves is a major maintenance concern in process industries. Anecdotal information indicates that reliability of some high maintenance valves has been improved by using an ion deposition process to achieve engineered surfaces on selected components. This project compared friction for various surface treatments of selected valve components. Results indicate valve performance may be slightly more consistent when an engineered surface is applied in the valve packing area; however surface treatment in this area does not appear to have a dominant affect on reducing valve friction. Results indicate a linear relation between stem friction and torque applied to packing flange nuts, and even after a valve is in service, controlled packing adjustments can be made without significantly changing valve stroke time.
Date: December 2000
Creator: Pope, Larry G.
System: The UNT Digital Library
Effect of Polyphosphoric Acid on Aging Characteristics of PG 64-22 Asphalt Binder (open access)

Effect of Polyphosphoric Acid on Aging Characteristics of PG 64-22 Asphalt Binder

This research presents the results on an experimental investigation to identify the effect of polyphosphoric acid (PPA) on aging characteristics of an asphalt binder. Addition of PPA to asphalt binders is said to improve performance of flexible pavements. Asphalt binder PG 64-22 in modified and unmodified conditions was subjected to aging in the laboratory using a regular oven and also simulated short term aging using rolling thin film oven (RTFO) test. Aging experiments were conducted to analyze the extent of oxidation in terms of changes in molecular structure of the asphalt binder. These changes were appraised using Fourier transform infrared (FTIR) spectroscopy, dynamic shear rheometer (DSR), and epifluorescence microscopy tests. FTIR was used to determine the changes in major bands with addition of PPA. Stiffness and viscoelastic behaviors of asphalts were determined from the DSR test. The stiffness is measured by calculating the shear modulus, G* and the viscoelastic behavior is measured by calculating the phase angle, sin &#948;. Epifluorescence microscopy is a tool used to study properties of organic or inorganic substances. The morphological characteristics of PPA modified asphalt samples were observed through epifluorescence microscopy. Epifluorescence microscopy reveals the polymer phase distribution in the asphalt binders. Results of this …
Date: December 2010
Creator: Ramasamy, Naresh Baboo
System: The UNT Digital Library
Radio frequency propagation differences through various transmissive materials. (open access)

Radio frequency propagation differences through various transmissive materials.

The purpose of this research was to determine which of the commonly used wireless telecommunication site concealment materials has the least effect on signal potency. The tested materials were Tuff Span® fiberglass panels manufactured by Enduro Composite Systems, Lexan® XL-1 polycarbonate plastic manufactured by GE Corporation and Styrofoam™ polystyrene board manufactured by The Dow Chemical Company. Testing was conducted in a double electrically isolated copper mesh screen room at the University of North Texas Engineering Technology Building in Denton, Texas. Analysis of the data found no differences exist between the radio frequency transmissiveness of these products at broadband personal communication service frequencies. However, differences in the signal do exist with regards to the angle of incidence between the material and the transmitting antenna.
Date: December 2002
Creator: Ryan, Patrick L.
System: The UNT Digital Library