FY2010 ANNUAL REVIEW E-AREA LOW-LEVEL WASTE FACILITY PERFORMANCE ASSESSMENT AND COMPOSITE ANALYSIS (open access)

FY2010 ANNUAL REVIEW E-AREA LOW-LEVEL WASTE FACILITY PERFORMANCE ASSESSMENT AND COMPOSITE ANALYSIS

The E-Area Low-Level Waste Facility (ELLWF) consists of a number of disposal units described in the Performance Assessment (PA)(WSRC, 2008b) and Composite Analysis (CA)(WSRC, 1997; WSRC, 1999): Low-Activity Waste (LAW) Vault, Intermediate Level (IL) Vault, Trenches (Slit Trenches [STs], Engineered Trenches [ETs], and Component-in-Grout [CIG] Trenches), and Naval Reactor Component Disposal Areas (NRCDAs). This annual review evaluates the adequacy of the approved 2008 ELLWF PA along with the Special Analyses (SAs) approved since the PA was issued. The review also verifies that the Fiscal Year (FY) 2010 low-level waste (LLW) disposal operations were conducted within the bounds of the PA/SA baseline, the Savannah River Site (SRS) CA, and the Department of Energy (DOE) Disposal Authorization Statement (DAS). Important factors considered in this review include waste receipts, results from monitoring and research and development (R&D) programs, and the adequacy of controls derived from the PA/SA baseline. Sections 1.0 and 2.0 of this review are a summary of the adequacy of the PA/SA and CA, respectively. An evaluation of the FY2010 waste receipts and the resultant impact on the ELLWF is summarized in Section 3.1. The results of the monitoring program, R&D program, and other relevant factors are found in Section 3.2, …
Date: January 1, 2011
Creator: Butcher, T.; Swingle, R.; Crapse, K.; Millings, M. & Sink, D.
Object Type: Report
System: The UNT Digital Library
Performance Validation and Scaling of a Capillary Membrane Solid-Liquid Separation System (open access)

Performance Validation and Scaling of a Capillary Membrane Solid-Liquid Separation System

Algaeventure Systems (AVS) has previously demonstrated an innovative technology for dewatering algae slurries that dramatically reduces energy consumption by utilizing surface physics and capillary action. Funded by a $6M ARPA-E award, transforming the original Harvesting, Dewatering and Drying (HDD) prototype machine into a commercially viable technology has required significant attention to material performance, integration of sensors and control systems, and especially addressing scaling issues that would allow processing extreme volumes of algal cultivation media/slurry. Decoupling the harvesting, dewatering and drying processes, and addressing the rate limiting steps for each of the individual steps has allowed for the development individual technologies that may be tailored to the specific needs of various cultivation systems. The primary performance metric used by AVS to assess the economic viability of its Solid-Liquid Separation (SLS) dewatering technology is algae mass production rate as a function of power consumption (cost), cake solids/moisture content, and solids capture efficiency. An associated secondary performance metric is algae mass loading rate which is dependent on hydraulic loading rate, area-specific hydraulic processing capacity (gpm/in2), filter:capillary belt contact area, and influent algae concentration. The system is capable of dewatering 4 g/L (0.4%) algae streams to solids concentrations up to 30% with capture efficiencies …
Date: October 25, 2011
Creator: Rogers, S.; Cook, J.; Juratovac, J.; Goodwillie, J.; Burke, T. & Stuart, B., ed.
Object Type: Article
System: The UNT Digital Library
Completion Report for Well ER-EC-15 Corrective Action Units 101 and 102: Central and Western Pahute Mesa (open access)

Completion Report for Well ER-EC-15 Corrective Action Units 101 and 102: Central and Western Pahute Mesa

Well ER-EC-15 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada National Security Site (formerly known as the Nevada Test Site), Nye County, Nevada. The well was drilled in October and November 2010, as part of the Pahute Mesa Phase II drilling program. The primary purpose of the well was to provide detailed hydrogeologic information in the Tertiary volcanic section in the area between Pahute Mesa and the Timber Mountain caldera complex that will help address uncertainties within the Pahute Mesa–Oasis Valley hydrostratigraphic model. In particular, the well was intended to help define the structural position and hydraulic parameters of volcanic aquifers potentially down-gradient from underground nuclear tests on Pahute Mesa. It may also be used as a long-term monitoring well.
Date: May 31, 2011
Creator: National Security Technologies, LLC
Object Type: Report
System: The UNT Digital Library
Large Synoptic Survey Telescope: From Science Drivers to Reference Design (open access)

Large Synoptic Survey Telescope: From Science Drivers to Reference Design

In the history of astronomy, major advances in our understanding of the Universe have come from dramatic improvements in our ability to accurately measure astronomical quantities. Aided by rapid progress in information technology, current sky surveys are changing the way we view and study the Universe. Next-generation surveys will maintain this revolutionary progress. We focus here on the most ambitious survey currently planned in the visible band, the Large Synoptic Survey Telescope (LSST). LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: constraining dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. It will be a large, wide-field ground-based system designed to obtain multiple images covering the sky that is visible from Cerro Pachon in Northern Chile. The current baseline design, with an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg{sup 2} field of view, and a 3,200 Megapixel camera, will allow about 10,000 square degrees of sky to be covered using pairs of 15-second exposures in two photometric bands every three nights on average. The system is designed to yield high image …
Date: October 14, 2011
Creator: Ivezic, Z.; Axelrod, T.; Brandt, W. N.; Burke, D. L.; Claver, C. F.; Connolly, A. et al.
Object Type: Article
System: The UNT Digital Library
Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Summary and Guide for Stakeholders (open access)

Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Summary and Guide for Stakeholders

Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723). DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321 et seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 1500–1508), and DOE’s NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations: Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho; Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and …
Date: January 1, 2011
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Quarkonium Spectroscopy And Search for New States at BaBar (open access)

Quarkonium Spectroscopy And Search for New States at BaBar

The BaBar experiment at the PEP-II B-factory gives excellent opportunities for the quarkonium spectroscopy. Investigation of the properties of new states like the X(3872), Y(3940) and Y(4260) are performed aiming to understand their nature. Recent BaBar results will be presented in this paper. At the B-factories charmonium and charmonium-like states are copiously produced via several mechanisms: in B decay (color suppressed b {yields} c transition), double charmonium production (e{sup +}e{sup -} {yields} c{bar c} + c{bar c}), two photons production ({gamma}*{gamma}* {yields} c{bar c}, where the c{bar c} state has positive C-parity) and in initial state radiation (ISR) when the e{sup {+-}} in its initial state emits a photon lowering the effective center of mass energy of the e{sup +}e{sup -} interaction (e{sup +}e{sup -} {yields} {gamma}{sub ISR} + c{bar c}, where the charmonium state has the quantum numbers J{sup PC} = 1{sup -2}). Many new states have been recently discovered at the B-factories, BaBar and Belle, above the D{bar D} threshold in the charmonium energy region. While some of them appear to be consistent with conventional c{sub c} states others do not fit with any expectation. Several interpretations for these states have been proposed: for some of them the …
Date: November 4, 2011
Creator: Cibinetto, G.
Object Type: Article
System: The UNT Digital Library
10MW Class Direct Drive HTS Wind Turbine: Cooperative Research and Development Final Report, CRADA Number CRD-08-00312 (open access)

10MW Class Direct Drive HTS Wind Turbine: Cooperative Research and Development Final Report, CRADA Number CRD-08-00312

This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes.
Date: May 1, 2011
Creator: Musial, W.
Object Type: Report
System: The UNT Digital Library
A New Ensemble of Perturbed-Input-Parameter Simulations by the Community Atmosphere Model (open access)

A New Ensemble of Perturbed-Input-Parameter Simulations by the Community Atmosphere Model

Uncertainty quantification (UQ) is a fundamental challenge in the numerical simulation of Earth's weather and climate, and other complex systems. It entails much more than attaching defensible error bars to predictions: in particular it includes assessing low-probability but high-consequence events. To achieve these goals with models containing a large number of uncertain input parameters, structural uncertainties, etc., raw computational power is needed. An automated, self-adapting search of the possible model configurations is also useful. Our UQ initiative at the Lawrence Livermore National Laboratory has produced the most extensive set to date of simulations from the US Community Atmosphere Model. We are examining output from about 3,000 twelve-year climate simulations generated with a specialized UQ software framework, and assessing the model's accuracy as a function of 21 to 28 uncertain input parameter values. Most of the input parameters we vary are related to the boundary layer, clouds, and other sub-grid scale processes. Our simulations prescribe surface boundary conditions (sea surface temperatures and sea ice amounts) to match recent observations. Fully searching this 21+ dimensional space is impossible, but sensitivity and ranking algorithms can identify input parameters having relatively little effect on a variety of output fields, either individually or in nonlinear …
Date: October 27, 2011
Creator: Covey, C; Brandon, S; Bremer, P T; Domyancis, D; Garaizar, X; Johannesson, G et al.
Object Type: Report
System: The UNT Digital Library
Loads Analysis of Several Offshore Floating Wind Turbine Concepts (open access)

Loads Analysis of Several Offshore Floating Wind Turbine Concepts

This paper presents a comprehensive dynamic-response analysis of six offshore floating wind turbine concepts.
Date: October 1, 2011
Creator: Robertson, A. N. & Jonkman, J. M.
Object Type: Article
System: The UNT Digital Library
Developing a Cost Model and Methodology to Estimate Capital Costs for Thermal Energy Storage (open access)

Developing a Cost Model and Methodology to Estimate Capital Costs for Thermal Energy Storage

This report provides an update on the previous cost model for thermal energy storage (TES) systems. The update allows NREL to estimate the costs of such systems that are compatible with the higher operating temperatures associated with advanced power cycles. The goal of the Department of Energy (DOE) Solar Energy Technology Program is to develop solar technologies that can make a significant contribution to the United States domestic energy supply. The recent DOE SunShot Initiative sets a very aggressive cost goal to reach a Levelized Cost of Energy (LCOE) of 6 cents/kWh by 2020 with no incentives or credits for all solar-to-electricity technologies.1 As this goal is reached, the share of utility power generation that is provided by renewable energy sources is expected to increase dramatically. Because Concentrating Solar Power (CSP) is currently the only renewable technology that is capable of integrating cost-effective energy storage, it is positioned to play a key role in providing renewable, dispatchable power to utilities as the share of power generation from renewable sources increases. Because of this role, future CSP plants will likely have as much as 15 hours of Thermal Energy Storage (TES) included in their design and operation. As such, the cost …
Date: December 1, 2011
Creator: Glatzmaier, G.
Object Type: Report
System: The UNT Digital Library
A Meta-Analysis of Energy Savings from Lighting Controls in Commercial Buildings (open access)

A Meta-Analysis of Energy Savings from Lighting Controls in Commercial Buildings

None
Date: September 2, 2011
Creator: Williams, Alison; Atkinson, Barbara; Garbesi, Karina; Rubinstein, Francis & Page, Erik
Object Type: Article
System: The UNT Digital Library
ANALYSIS OF SAMPLES FROM TANK 5F CHEMICAL CLEANING (open access)

ANALYSIS OF SAMPLES FROM TANK 5F CHEMICAL CLEANING

The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. The conclusions from this work are: (1) With the exception of iron, the dissolution of sludge components from Tank 5F agreed with results from the actual waste demonstration performed in 2007. The fraction of iron removed from Tank 5F by chemical cleaning was significantly less than the fraction removed in the SRNL demonstrations. The likely cause of this difference is the high pH following the first oxalic acid strike. (2) Most of the sludge mass remaining in the tank is iron and nickel. (3) The remaining sludge contains approximately 26 kg of barium, 37 kg of chromium, …
Date: March 7, 2011
Creator: Poirier, M. & Fink, S.
Object Type: Report
System: The UNT Digital Library
Establishment of a Hub for the Light Water Reactor Sustainability Online Monitoring Community (open access)

Establishment of a Hub for the Light Water Reactor Sustainability Online Monitoring Community

Implementation of online monitoring and prognostics in existing U.S. nuclear power plants will involve coordinating the efforts of national laboratories, utilities, universities, and private companies. Internet-based collaborative work environments provide necessary communication tools to facilitate interaction between geographically diverse participants. Available technologies were considered, and a collaborative workspace was established at INL as a hub for the light water reactor sustainability online monitoring community.
Date: August 1, 2011
Creator: Lybeck, Nancy J.; Tawfik, Magdy S. & Pham, Binh T.
Object Type: Report
System: The UNT Digital Library
Toward TW-Level, Hard X-Ray Pulses at LCLS (open access)

Toward TW-Level, Hard X-Ray Pulses at LCLS

Coherent diffraction imaging of complex molecules such as proteins requires a large number (e.g., {approx} 10{sup 13}/pulse) of hard X-ray photons within a time scale of {approx} 10 fs or less. This corresponds to a peak power of {approx} 1 TW, much larger than that currently generated by LCLS or other proposed X-ray free electron lasers (FELs). We study the feasibility of producing such pulses using a LCLS-like, low charge electron beam, as will be possible in the LCLS-II upgrade project, employing a configuration beginning with a SASE amplifier, followed by a 'self-seeding' crystal monochromator, and finishing with a long tapered undulator. Our results suggest that TW-level output power at 8.3 keV is possible from a total undulator system length around 200 m. In addition power levels larger than 100 GW are generated at the third harmonic. We present a tapering strategy that extends the original 'resonant particle' formalism by optimizing the transport lattice to maximize optical guiding and enhance net energy extraction. We discuss the transverse and longitudinal coherence properties of the output radiation pulse and the expected output pulse energy sensitivity, both to taper errors and to power fluctuations on the monochromatized SASE seed.
Date: December 13, 2011
Creator: Fawley, W. M.; Frisch, J.; Huang, Z.; Jiao, Y.; Nuhn, H. D.; Pellegrini, C. et al.
Object Type: Article
System: The UNT Digital Library
Amplification of current density modulation in a FEL with an infinite electron beam (open access)

Amplification of current density modulation in a FEL with an infinite electron beam

We show that the paraxial field equation for a free electron laser (FEL) in an infinitely wide electron beam with {kappa}-2 energy distribution can be reduced to a fourth ordinary differential equation (ODE). Its solution for arbitrary initial phase space density modulation has been derived in the wave-vector domain. For initial current modulation with Gaussian profile, close form solutions are obtained in space-time domain. In developing an analytical model for a FEL-based coherent electron cooling system, an infinite electron beam has been assumed for the modulation and correction processes. While the assumption has its limitation, it allows for an analytical close form solution to be obtained, which is essential for investigating the underlying scaling law, benchmarking the simulation codes and understanding the fundamental physics. 1D theory was previously applied to model a CeC FEL amplifier. However, the theory ignores diffraction effects and does not provide the transverse profile of the amplified electron density modulation. On the other hand, 3D theories developed for a finite electron beam usually have solutions expanded over infinite number of modes determined by the specific transverse boundary conditions. Unless the mode with the largest growth rate substantially dominates other modes, both evaluation and extracting scaling laws …
Date: March 28, 2011
Creator: Wang, G.; Litvinenko, V. N. & Webb, S. D.
Object Type: Article
System: The UNT Digital Library
Characterization of Mo/Si multilayer growth on stepped topographies (open access)

Characterization of Mo/Si multilayer growth on stepped topographies

Mo/Si multilayer mirrors with nanoscale bilayer thicknesses have been deposited on stepped substrate topographies, using various deposition angles. The multilayer morphology at the stepedge region was studied by cross section transmission electron microscopy. A transition from a continuous- to columnar layer morphology is observed near the step-edge, as a function of the local angle of incidence of the deposition flux. Taking into account the corresponding kinetics and anisotropy in layer growth, a continuum model has been developed to give a detailed description of the height profiles of the individual continuous layers. Complementary optical characterization of the multilayer system using a microscope operating in the extreme ultraviolet wavelength range, revealed that the influence of the step-edge on the planar multilayer structure is restricted to a region within 300 nm from the step-edge.
Date: August 31, 2011
Creator: van den Boogaard, A. J. R.; Louis, E.; Zoethout, E.; Goldberg, K. A. & Bijkerk, F.
Object Type: Article
System: The UNT Digital Library
ADVANCED MIXING MODELS (open access)

ADVANCED MIXING MODELS

The process of recovering and processing High Level Waste (HLW) the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four mixers (pumps) located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are typically set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The focus of the present work is to establish mixing criteria applicable to miscible fluids, with an ultimate goal of addressing waste processing in HLW tanks at SRS and quantifying the mixing time required to suspend sludge particles with the submersible jet pump. A single-phase computational fluid dynamics (CFD) approach was taken for the analysis of jet flow patterns with an emphasis on the velocity decay …
Date: February 14, 2011
Creator: Lee, S.; Dimenna, R. & Tamburello, D.
Object Type: Report
System: The UNT Digital Library
E906/SeaQuest MARS15 Simulation (open access)

E906/SeaQuest MARS15 Simulation

The E906/SeaQuest spectrometer is designed to measure high energy muons produced in the forward direction by interactions of the 120 GeV Main Injector proton beam with a variety of targets. The spectrometer consists of two dipole magnets (both of which deflect charged particles in the horizontal plane) and a collection of tracking detectors. The first spectrometer magnet (FMAG) is a solid iron magnet. This magnet serves as a beam dump as well as a muon analysis magnet. A series of MARS15 simulations were done by Nikolai Mokhov to verify and guide the design of concrete shielding around FMAG and the target area immediately upstream of FMAG. The result of the fourth and last round of simulations is summarized here. This was a high statistics simulation that required approximately 48 cpu-weeks of computing time on the APC Energy Deposition Group cluster. The MARS15 simulation used a model of FMAG and its surroundings. The model includes air gaps in the concrete shielding, the largest of which are required because of the geometry of the saddle coils. A small volume surrounding the beam line just upstream of the magnet is filled with borated polyethylene. The borated polyethylene extends into the air gap necessitated …
Date: February 1, 2011
Creator: Christian, David & Geelhoed, Mike
Object Type: Report
System: The UNT Digital Library
MWRRET Value-Added Product: The Retrieval of Liquid Water Path and Precipitable Water Vapor from Microwave Radiometer (MWR) Data Sets (Revision 2) (open access)

MWRRET Value-Added Product: The Retrieval of Liquid Water Path and Precipitable Water Vapor from Microwave Radiometer (MWR) Data Sets (Revision 2)

This report provides a short description of the Atmospheric Radiation Measurement (ARM) Climate Research Facility microwave radiometer (MWR) Retrieval (MWRRET) value-added product (VAP) algorithm. This algorithm utilizes a complementary physical retrieval method and applies brightness temperature offsets to reduce spurious liquid water path (LWP) bias in clear skies resulting in significantly improved precipitable water vapor (PWV) and LWP retrievals. We present a general overview of the technique, input parameters, output products, and describe data quality checks. A more complete discussion of the theory and results is given in Turner et al. (2007b).
Date: July 25, 2011
Creator: Gaustad, K. L.; Turner, D. D. & McFarlane, S. A.
Object Type: Report
System: The UNT Digital Library
Search for $B_s \to \mu^+\mu^-$ and $B_d \to \mu^+\mu^-$ Decays with CDF II (open access)

Search for $B_s \to \mu^+\mu^-$ and $B_d \to \mu^+\mu^-$ Decays with CDF II

A search has been performed for B{sub s}{sup 0} {yields} {mu}{sup +}{mu}{sup -} and B{sup 0} {yields} {mu}{sup +}{mu}{sup -} decays using 7 fb{sup -1} of integrated luminosity collected by the CDF II detector at the Fermilab Tevatron collider. The observed number of B{sup 0} candidates is consistent with background-only expectations and yields an upper limit on the branching fraction of {Beta}(B{sup 0} {yields} {mu}{sup +}{mu}{sup -}) < 6.0 x 10{sup -9} at 95% confidence level. We observe an excess of B{sub s}{sup 0} candidates. The probability that the background processes alone could produce such an excess or larger is 0.27%. The probability that the combination of background and the expected standard model rate of B{sub s}{sup 0} {yields} {mu}{sup +}{mu}{sup -} could produce such an excess or larger is 1.9%. These data are used to determine {Beta}(B{sub s}{sup 0} {yields} {mu}{sup +}{mu}{sup -}) = (1.8{sub -0.9}{sup +1.1}) x 10{sup -8} and provide an upper limit of {Beta}(B{sub s}{sup 0} {yields} {mu}{sup +}{mu}{sup -}) < 4.0 x 10{sup -8} at 95% confidence level.
Date: July 1, 2011
Creator: Aaltonen, T.; Phys., /Helsinki Inst. of; Alvarez Gonzalez, B.; Phys., /Oviedo U. /Cantabria Inst. of; Amerio, S.; /INFN, Padua et al.
Object Type: Article
System: The UNT Digital Library
NOVEL REFRACTORY MATERIALS FOR HIGH ALKALI, HIGH TEMPERATURE ENVIRONMENTS (open access)

NOVEL REFRACTORY MATERIALS FOR HIGH ALKALI, HIGH TEMPERATURE ENVIRONMENTS

Refractory materials can be limited in their application by many factors including chemical reactions between the service environment and the refractory material, mechanical degradation of the refractory material by the service environment, temperature limitations on the use of a particular refractory material, and the inability to install or repair the refractory material in a cost effective manner or while the vessel was in service. The objective of this project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al 2O3 spinel or other similar magnesia/alumina containing unshaped refractory composition (castables, gunnables, shotcretes, etc) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, high-alkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries.
Date: September 1, 2011
Creator: Hemrick, James Gordon
Object Type: Report
System: The UNT Digital Library
Linac Alignment Algorithm: Analysis on 1-to-1 Steering (open access)

Linac Alignment Algorithm: Analysis on 1-to-1 Steering

In a linear accelerator, it is important to achieve a good alignment between all of its components (such as quadrupoles, RF cavities, beam position monitors et al.), in order to better preserve the beam quality during acceleration. After the survey of the main linac components, there are several beam-based alignment (BBA) techniques to be applied, to further optimize the beam trajectory and calculate the corresponding steering magnets strength. Among these techniques the most simple and straightforward one is the one-to-one (1-to-1) steering technique, which steers the beam from quad center to center, and removes the betatron oscillation from quad focusing. For a future linear collider such as the International Linear Collider (ILC), the initial beam emittance is very small in the vertical plane (flat beam with {gamma}{epsilon}{sub y} = 20-40nm), which means the alignment requirement is very tight. In this note, we evaluate the emittance growth with one-to-one correction algorithm employed, both analytically and numerically. Then the ILC main linac accelerator is taken as an example to compare the vertical emittance growth after 1-to-1 steering, both from analytical formulae and multi-particle tracking simulation. It is demonstrated that the estimated emittance growth from the derived formulae agrees well with the results …
Date: August 19, 2011
Creator: Sun, Yipeng & Adolphsen, Chris
Object Type: Report
System: The UNT Digital Library
Local Energy Plans in Practice: Case Studies of Austin and Denver (open access)

Local Energy Plans in Practice: Case Studies of Austin and Denver

Examines the successes and difficulties that Denver, CO, and Austin, TX , experienced implementing citywide energy plans.
Date: March 1, 2011
Creator: Petersen, D.; Matthews, E. & Weingarden, M.
Object Type: Report
System: The UNT Digital Library
Reference Inflow Characterization for River Resource Reference Model (RM2) (open access)

Reference Inflow Characterization for River Resource Reference Model (RM2)

Sandia National Laboratory (SNL) is leading an effort to develop reference models for marine and hydrokinetic technologies and wave and current energy resources. This effort will allow the refinement of technology design tools, accurate estimates of a baseline levelized cost of energy (LCoE), and the identification of the main cost drivers that need to be addressed to achieve a competitive LCoE. As part of this effort, Oak Ridge National Laboratory was charged with examining and reporting reference river inflow characteristics for reference model 2 (RM2). Published turbulent flow data from large rivers, a water supply canal and laboratory flumes, are reviewed to determine the range of velocities, turbulence intensities and turbulent stresses acting on hydrokinetic technologies, and also to evaluate the validity of classical models that describe the depth variation of the time-mean velocity and turbulent normal Reynolds stresses. The classical models are found to generally perform well in describing river inflow characteristics. A potential challenge in river inflow characterization, however, is the high variability of depth and flow over the design life of a hydrokinetic device. This variation can have significant effects on the inflow mean velocity and turbulence intensity experienced by stationary and bottom mounted hydrokinetic energy conversion …
Date: December 1, 2011
Creator: Neary, Vincent S.
Object Type: Report
System: The UNT Digital Library