Solar Energy Windows and Smart IR Switchable Building Technologies (open access)

Solar Energy Windows and Smart IR Switchable Building Technologies

The three building envelope functions with the largest impact on the energy usage are illumination, energy flux and energy production. In general, these three functions are addressed separately in the building design. A step change toward a zero-energy building can be achieved with a glazing system that combines these three functions and their control into a single unit. In particular, significant value could be realized if illumination into the building is dynamically controlled such that it occurs during periods of low load on the grid (e.g., morning) to augment illumination supplied by interior lights and then to have that same light diverted to PV energy production and the thermal energy rejected during periods of high load on the grid. The objective of this project is to investigate the feasibility of a glazing unit design that integrates these three key functions (illumination and energy flux control, and power production) into a single module.
Date: September 30, 2011
Creator: McCarny, James & Kornish, Brian
Object Type: Report
System: The UNT Digital Library
Hopewell Beneficial CO2 Capture for Production of Fuels, Fertilizer and Energy (open access)

Hopewell Beneficial CO2 Capture for Production of Fuels, Fertilizer and Energy

For Phase 1 of this project, the Hopewell team developed a detailed design for the Small Scale Pilot-Scale Algal CO2 Sequestration System. This pilot consisted of six (6) x 135 gallon cultivation tanks including systems for CO2 delivery and control, algal cultivation, and algal harvesting. A feed tank supplied Hopewell wastewater to the tanks and a receiver tank collected the effluent from the algal cultivation system. The effect of environmental parameters and nutrient loading on CO2 uptake and sequestration into biomass were determined. Additionally the cost of capturing CO2 from an industrial stack emission at both pilot and full-scale was determined. The engineering estimate evaluated Amine Guard technology for capture of pure CO2 and direct stack gas capture and compression. The study concluded that Amine Guard technology has lower lifecycle cost at commercial scale, although the cost of direct stack gas capture is lower at the pilot scale. Experiments conducted under high concentrations of dissolved CO2 did not demonstrate enhanced algae growth rate. This result suggests that the dissolved CO2 concentration at neutral pH was already above the limiting value. Even though dissolved CO2 did not show a positive effect on biomass growth, controlling its value at a constant set-point …
Date: September 30, 2010
Creator: UOP LLC
Object Type: Report
System: The UNT Digital Library
Performance Metrics for Commercial Buildings (open access)

Performance Metrics for Commercial Buildings

Commercial building owners and operators have requested a standard set of key performance metrics to provide a systematic way to evaluate the performance of their buildings. The performance metrics included in this document provide standard metrics for the energy, water, operations and maintenance, indoor environmental quality, purchasing, waste and recycling and transportation impact of their building. The metrics can be used for comparative performance analysis between existing buildings and industry standards to clarify the impact of sustainably designed and operated buildings.
Date: September 30, 2010
Creator: Fowler, Kimberly M.; Wang, Na; Romero, Rachel L. & Deru, Michael P.
Object Type: Report
System: The UNT Digital Library
Power Plant Replacement Study (open access)

Power Plant Replacement Study

None
Date: September 30, 2010
Creator: Reed, Gary
Object Type: Report
System: The UNT Digital Library
Power Plant Replacement Study (open access)

Power Plant Replacement Study

None
Date: September 30, 2010
Creator: Reed, Gary
Object Type: Report
System: The UNT Digital Library
Integrated Advanced Energy Systems Research at IIT (open access)

Integrated Advanced Energy Systems Research at IIT

This report consists of Two research projects; Sustainable Buildings and Hydrogen Storage. Sustainable Building Part includes: Wind and the self powered built environment by professor P. Land and his research group and experimental and computational works by professor D. Rempfer and his research group. Hydrogen Storage part includes: Hydrogen Storage Using Mg-Mixed Metal Hydrides by professor H. Arastoopour and his research team and Carbon Nanostructure as Hydrogen Storage Material by professor J. Prakash and his research team.
Date: September 30, 2010
Creator: Arastoopour, Hamid
Object Type: Report
System: The UNT Digital Library
Effect of MgO Additive on Volumetric Expansion of Self-Degradable Cements (open access)

Effect of MgO Additive on Volumetric Expansion of Self-Degradable Cements

We identified hard-burned magnesium oxide (MgO) as a suitable expansive additive for improving the plugging performance of self-degradable, temporary sodium silicate-activated slag/Class C fly ash (SSASC) blend cement sealers into rock fractures in Enhanced Geothermal Systems (EGSs). MgO extended the volumetric expansion of sealers during their exposure to a hydrothermal environment at 200 C under pressures, ranging from 300 to 1500 psi. A great expansion ratc of 19.3% was observed by adding 3.0 wt% MgO under 300 psi pressure, thus promising to plug thoroughly inner fracture. When the pressure was increased from 300 psi to 1500 psi, the expansion rate of cement markedly reduced, corresponding to the formaLion of crack-free specimens and the improvement of compressive strength. However, with 3.0 wt% MgO, the specimens still engendered the generation of numerous visual cracks, although they were prepared under a high pressure of 1500 psi. The effective content of MgO in minimizing and eliminating the generation of cracks was 2.0 wt%, which provided a moderate expansion of {ge} 0.5%. The compressive strength of 2.0 wt% MgO specimens made under a pressure of 300 psi rose {approx} 1.7-fold to 4816 psi with an increasing pressure to 1500 psi. The in-situ growth of brucite …
Date: September 30, 2011
Creator: Sugama, T.; Warren, J. & Butcher, T.
Object Type: Report
System: The UNT Digital Library
Numerical and Experimental Study of Mixing Processes Associated with Hydrogen and High Hydrogen Content Fuels (open access)

Numerical and Experimental Study of Mixing Processes Associated with Hydrogen and High Hydrogen Content Fuels

As simulation capability improves exponentially with increasingly more cost effective CPUs and hardware, it can be used ?routinely? for engineering applications. Many commercial products are available and they are marketed as increasingly powerful and easy to use. The question remains as to the overall accuracy of results obtained. To support the validation of the CFD, a hierarchical experiment was established in which the type of fuel injection (radial, axial) as well as level of swirl (non-swirling, swirling) could be systematically varied. The effort was limited to time efficient approaches (i.e., generally RANS approaches) although limited assessment of time resolved methods (i.e., unsteady RANS and LES) were considered. Careful measurements of the flowfield velocity and fuel concentration were made using both intrusive and non-intrusive methods. This database was then used as the basis for the assessment of the CFD approach. The numerical studies were carried out with a statistically based matrix. As a result, the effect of turbulence model, fuel type, axial plane, turbulent Schmidt number, and injection type could be studied using analysis of variance. The results for the non-swirling cases could be analyzed as planned, and demonstrate that turbulence model selection, turbulence Schmidt number, and the type of injection …
Date: September 30, 2011
Creator: McDonell, Vincent; Hill, Scott; Akbari, Amin & McDonell, Vincent
Object Type: Report
System: The UNT Digital Library
High Extraction Phosphors for Solid State Lighting (open access)

High Extraction Phosphors for Solid State Lighting

We have developed high-index, high efficiency bulk luminescent materials and novel nano-sized phosphors for improved solid-state white LED lamps. These advances can potentially contribute to reducing the loss in luminous efficiencies due to scattering, re-absorption, and thermal quenching. The bulk and nanostructured luminescent materials investigated are index matched to GaN and have broad and size-tunable absorption bands, size and impurity tuned emission bands, size-driven elimination of scattering effects, and a separation between absorption and emission bands. These innovations were accomplished through the use of novel synthesis techniques suitable for high volume production for LED lamp applications. The program produced a full-color set of high quantum yield phosphors with high chemical stability. In the bulk phosphor study, the ZnSeS:Cu,Ag phosphor was optimized to achieve >91% efficiency using erbium (Er) and other activators as sensitizers. Detailed analysis of temperature quenching effects on a large number of ZnSeS:Cu,Ag,X and strontium- and calcium-thiogallate phosphors lead to a breakthrough in the understanding of the “anti-quenching” behavior and a physical bandgap model was developed of this phenomena. In a follow up to this study, optimized phosphor blends for high efficiency and color performance were developed and demonstrated a 2-component phosphor system with good white chromaticity, color …
Date: September 30, 2011
Creator: Summers, Chris; Menkara, Hisham & Wagner, Brent
Object Type: Report
System: The UNT Digital Library
THERMAL AND SPECTROSCOPIC ANALYSES OF NEXT GENERATION CAUSTIC SIDE SOLVENT EXTRACTION SOLVENT CONTACTED WITH 3, 8, AND 16 MOLAR NITRIC ACID (open access)

THERMAL AND SPECTROSCOPIC ANALYSES OF NEXT GENERATION CAUSTIC SIDE SOLVENT EXTRACTION SOLVENT CONTACTED WITH 3, 8, AND 16 MOLAR NITRIC ACID

A new solvent system referred to as Next Generation Solvent or NGS, has been developed at Oak Ridge National Laboratory for the removal of cesium from alkaline solutions in the Caustic Side Solvent Extraction process. NGS is proposed for deployment at MCU and at the Salt Waste Processing Facility. This work investigated the chemical compatibility between NGS and 16 M, 8 M, and 3 M nitric acid from contact that may occur in handling of analytical samples from MCU or, for 3 M acid, which may occur during contactor cleaning operations at MCU. This work shows that reactions occurred between NGS components and the high molarity nitric acid. In the case of 16 M and 8 M nitric acid, initially organo-nitrate groups are generated and attach to the modifier and that with time oxidation reactions convert the modifier into a tarry substance with gases (NO{sub x} and possibly CO) evolving. Calorimetric analysis of the organonitrate revealed the reaction products are not explosive nor will they deflagrate. NGS exposure to 3 M nitric acid resulted in much slower reaction kinetics and that the generated products were not energetic. We recommended conducting Accelerated Rate calorimetry on the materials generated in the 16 …
Date: September 30, 2011
Creator: Fondeur, F. & Fink, S.
Object Type: Report
System: The UNT Digital Library
American Recovery and Reinvestment Act (ARRA) Federal Energy Management Program Technical Assistance Project 224 Altus Air Force Base Solar Technologies (open access)

American Recovery and Reinvestment Act (ARRA) Federal Energy Management Program Technical Assistance Project 224 Altus Air Force Base Solar Technologies

The principal goal of this project was to evaluate altus Air Force Base for building integrated silicon or thin film module photovoltaic opportunities. This report documents PNNL's efforts and documents study conclusions.
Date: September 30, 2010
Creator: Russo, Bryan J.
Object Type: Report
System: The UNT Digital Library
Holey Silicon as an Efficient Thermoelectric Material (open access)

Holey Silicon as an Efficient Thermoelectric Material

This work investigated the thermoelectric properties of thin silicon membranes that have been decorated with high density of nanoscopic holes. These ?holey silicon? (HS) structures were fabricated by either nanosphere or block-copolymer lithography, both of which are scalable for practical device application. By reducing the pitch of the hexagonal holey pattern down to 55 nm with 35percent porosity, the thermal conductivity of HS is consistently reduced by 2 orders of magnitude and approaches the amorphous limit. With a ZT value of 0.4 at room temperature, the thermoelectric performance of HS is comparable with the best value recorded in silicon nanowire system.
Date: September 30, 2010
Creator: Tang, Jinyao; Wang, Hung-Ta; Hyun Lee, Dong; Fardy, Melissa; Huo, Ziyang; Russell, Thomas P. et al.
Object Type: Article
System: The UNT Digital Library
Building Stronger State Partnerships with the US Department of Energy (Energy Assurance) (open access)

Building Stronger State Partnerships with the US Department of Energy (Energy Assurance)

From 2007 until 2011, the National Association of Regulatory Utility Commissioners (NARUC) engaged in a partnership with the National Energy Technology Lab (NETL) to improve State-Federal coordination on electricity policy and energy assurance issues. This project allowed State Public Utility Commissioners and their staffs to engage on the most cutting-edge level in the arenas of energy assurance and electricity policy. Four tasks were outlined in the Statement of Performance Objectives: Task 1 - Training for Commissions on Critical Infrastructure Topics; Task 2 - Analyze and Implement Recommendations on Energy Assurance Issues; Task 3 - Ongoing liaison activities & outreach to build stronger networks between federal agencies and state regulators; and Task 4 - Additional Activities. Although four tasks were prescribed, in practice these tasks were carried out under two major activity areas: the critical infrastructure and energy assurance partnership with the US Department of Energy's Infrastructure Security and Emergency Response office, and the National Council on Electricity Policy, a collaborative which since 1994 has brought together State and Federal policymakers to address the most pressing issues facing the grid from restructuring to smart grid implementation. On Critical Infrastructure protection, this cooperative agreement helped State officials yield several important advances. The …
Date: September 30, 2011
Creator: Keogh, Mike
Object Type: Report
System: The UNT Digital Library
IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY:  An ENERGY STAR Resource Guide for Energy and Plant Managers (open access)

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.
Date: September 30, 2010
Creator: Melody, Moya; Dunham Whitehead, Camilla & Brown, Richard
Object Type: Report
System: The UNT Digital Library
Power Plant Replacement Study (open access)

Power Plant Replacement Study

None
Date: September 30, 2010
Creator: Reed, Gary
Object Type: Report
System: The UNT Digital Library
Subtask 5.3 - Water and Energy Sustainability and Technology (open access)

Subtask 5.3 - Water and Energy Sustainability and Technology

The overall goal of this Energy & Environmental Research Center project was to evaluate water capture technologies in a carbon capture and sequestration system and perform a complete systems analysis of the process to determine potential water minimization opportunities within the entire system. To achieve that goal, a pilot-scale liquid desiccant dehumidification system (LDDS) was fabricated and tested in conjunction with a coal-fired combustion test furnace outfitted with CO{sub 2} mitigation technologies, including the options of oxy-fired operation and postcombustion CO{sub 2} capture using an amine scrubber. The process gas stream for these tests was a coal-derived flue gas that had undergone conventional pollutant control (particulates, SO{sub 2}) and CO{sub 2} capture with an amine-based scrubber. The water balance data from the pilot-scale tests show that the packed-bed absorber design was very effective at capturing moisture down to levels that approach equilibrium conditions.
Date: September 30, 2010
Creator: Folkedahl, Bruce; Martin, Christopher & Dunham, David
Object Type: Report
System: The UNT Digital Library
Hydrogen and Fuel Cell Education at California State University, Los Angeles (open access)

Hydrogen and Fuel Cell Education at California State University, Los Angeles

California State University, Los Angeles, has partnered with the Department of Energy in addressing the workforce preparation and public education needs of the fuel cell industry and the US economy through a comprehensive set of curriculum development and training activities: * Developing and offering several courses in fuel cell technologies, hydrogen and alternative fuels production, alternative and renewable energy technologies as means of zero emissions hydrogen economy, and sustainable environment. * Establishing a zero emissions PEM fuel cell and hydrogen laboratory supporting curriculum and graduate students’ teaching and research experiences. * Providing engaging capstone projects for multi-disciplinary teams of senior undergraduate students. * Fostering partnerships with automotive OEMs and energy providers. * Organizing and participating in synergistic projects and activities that grow the program and assure its sustainability.
Date: September 30, 2011
Creator: Blekhman, David
Object Type: Report
System: The UNT Digital Library
Power Plant Replacement Study (open access)

Power Plant Replacement Study

None
Date: September 30, 2010
Creator: Reed, Gary
Object Type: Report
System: The UNT Digital Library
Advanced Engine/Aftertreatment System R&D (open access)

Advanced Engine/Aftertreatment System R&D

Navistar and ORNL established this CRADA to develop diesel engine aftertreatment configurations and control strategies that could meet emissions regulations while maintaining or improving vehicle efficiency. The early years of the project focused on reducing the fuel penalty associated with lean NOx trap (LNT, also known as NOx adsorber catalyst) regeneration and desulfation. While Navistar pursued engine-based (in-cylinder) approaches to LNT regeneration, complementary experiments at ORNL focused on in-exhaust fuel injection. ORNL developed a PC-based controller for transient electronic control of EGR valve position, intake throttle position, and actuation of fuel injectors in the exhaust system of a Navistar engine installed at Oak Ridge. Aftertreatment systems consisting of different diesel oxidation catalysts (DOCs) in conjunction with a diesel particle filter and LNT were evaluated under quasi-steady-state conditions. Hydrocarbon (HC) species were measured at multiple locations in the exhaust system with Gas chromatograph mass spectrometry (GC-MS) and Fourier transform infrared (FTIR) spectroscopy.
Date: September 30, 2011
Creator: Pihl, J.; West, B.; Toops, T.; Adelman, B. (Navistar, Inc.) & Derybowski, E. (Navistar, Inc.)
Object Type: Report
System: The UNT Digital Library
IMPROVED ANTIFOAM AGENT STUDY END OF YEAR REPORT, EM PROJECT 3.2.3 (open access)

IMPROVED ANTIFOAM AGENT STUDY END OF YEAR REPORT, EM PROJECT 3.2.3

Antifoam 747 is added to minimize foam produced by process gases and water vapor during chemical processing of sludge in the Defense Waste Processing Facility (DWPF). This allows DWPF to maximize acid addition and evaporation rates to minimize the cycle time in the Chemical Processing Cell (CPC). Improvements in DWPF melt rate due to the addition of bubblers in the melter have resulted in the need for further reductions in cycle time in the CPC. This can only be accomplished with an effective antifoam agent. DWPF production was suspended on March 22, 2011 as the result of a Flammable Gas New Information/(NI) Potential Inadequacy in the Safety Analysis (PISA). The issue was that the DWPF melter offgas flammability strategy did not take into account the H and C in the antifoam, potentially flammable components, in the melter feed. It was also determined the DWPF was using much more antifoam than anticipated due to a combination of longer processing in the CPC due to high Hg, longer processing due to Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) additions, and adding more antifoam than recommended. The resolution to the PISA involved and assessment of the impact of the antifoam …
Date: September 30, 2011
Creator: Lambert, D.; Koopman, D. & Newell, J.
Object Type: Report
System: The UNT Digital Library
American Recovery and Reinvestment Act Federal Energy Management Program Technical Assistance Project 184 U.S. Customs and Border Protection Laboratory, Houston, Texas (open access)

American Recovery and Reinvestment Act Federal Energy Management Program Technical Assistance Project 184 U.S. Customs and Border Protection Laboratory, Houston, Texas

This report documents the findings of an on-site energy audit of the U.S. Customs and Border Protection (CBP) Laboratory in Houston, Texas. The focus of the audit was to identify various no-cost and low-cost energy efficiency opportunities that, once implemented, would reduce electricity and gas consumption and increase the operational efficiency of the building. This audit also provided an opportunity to identify potential capital cost projects that should be considered in the future to acquire additional energy (electric and gas) and water savings to further increase the operational efficiency of the building.
Date: September 30, 2010
Creator: Arends, J. & Sandusky, William F.
Object Type: Report
System: The UNT Digital Library
Power Plant Replacement Study (open access)

Power Plant Replacement Study

None
Date: September 30, 2010
Creator: Reed, Gary
Object Type: Report
System: The UNT Digital Library
Power Plant Replacement Study (open access)

Power Plant Replacement Study

None
Date: September 30, 2010
Creator: Reed, Gary
Object Type: Report
System: The UNT Digital Library
Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures (open access)

Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

The successful adaptation of conventional cobalt and iron-based Fischer-Tropsch synthesis catalysts for use in converting biomass-derived syngas hinges in part on understanding their susceptibility to byproducts produced during the biomass gasification process. With the possibility that oil production will peak in the near future, and due to concerns in maintaining energy security, the conversion of biomass-derived syngas and syngas derived from coal/biomass blends to Fischer-Tropsch synthesis products to liquid fuels may provide a sustainable path forward, especially considering if carbon sequestration can be successfully demonstrated. However, one current drawback is that it is unknown whether conventional catalysts based on iron and cobalt will be suitable without proper development because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using an entrained-flow oxygen-blown gasifier) than solely from coal, other byproducts may be present in higher concentrations. The current project examines the impact of a number of potential byproducts of concern from the gasification of biomass process, including compounds containing alkali chemicals like the chlorides of sodium and potassium. In the second year, researchers from the University of Kentucky Center for Applied Energy …
Date: September 30, 2010
Creator: Davis, Burtron; Jacobs, Gary; Ma, Wenping; Azzam, Khalid; Sparks, Dennis & Shafer, Wilson
Object Type: Report
System: The UNT Digital Library