First Beam Measurements with the LHC Synchrotron Light Monitors (open access)

First Beam Measurements with the LHC Synchrotron Light Monitors

The continuous monitoring of the transverse sizes of the beams in the Large Hadron Collider (LHC) relies on the use of synchrotron radiation and intensified video cameras. Depending on the beam energy, different synchrotron light sources must be used. A dedicated superconducting undulator has been built for low beam energies (450 GeV to 1.5 TeV), while edge and centre radiation from a beam-separation dipole magnet are used respectively for intermediate and high energies (up to 7 TeV). The emitted visible photons are collected using a retractable mirror, which sends the light into an optical system adapted for acquisition using intensified CCD cameras. This paper presents the design of the imaging system, and compares the expected light intensity with measurements and the calculated spatial resolution with a cross calibration performed with the wire scanners. Upgrades and future plans are also discussed.
Date: July 13, 2012
Creator: Lefevre, Thibaut; Bravin, Enrico; Burtin, Gerard; Guerrero, Ana; Jeff, Adam; Rabiller, Aurelie et al.
Object Type: Article
System: The UNT Digital Library
Developement of 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM) (open access)

Developement of 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM)

Many next-generation physics experiments will be characterized by the collection of large quantities of data, taken in rapid succession, from which scientists will have to unravel the underlying physical processes. In most cases, large backgrounds will overwhelm the physics signal. Since the quantity of data that can be stored for later analysis is limited, real-time event selection is imperative to retain the interesting events while rejecting the background. Scaling of current technologies is unlikely to satisfy the scientific needs of future projects, so investments in transformational new technologies need to be made. For example, future particle physics experiments looking for rare processes will have to address the demanding challenges of fast pattern recognition in triggering as detector hit density becomes significantly higher due to the high luminosity required to produce the rare processes. In this proposal, we intend to develop hardware-based technology that significantly advances the state-of-the-art for fast pattern recognition within and outside HEP using the 3D vertical integration technology that has emerged recently in industry. The ultimate physics reach of the LHC experiments will crucially depend on the tracking trigger's ability to help discriminate between interesting rare events and the background. Hardware-based pattern recognition for fast triggering on …
Date: April 13, 2011
Creator: Deputch, G.; Hoff, J.; Lipton, R.; Liu, T.; Olsen, J.; Ramberg, E. et al.
Object Type: Report
System: The UNT Digital Library
Collapsing Bubble in Metal for High Energy Density Physics Study (open access)

Collapsing Bubble in Metal for High Energy Density Physics Study

This paper presents a new idea to produce matter in the high energy density physics (HEDP) regime in the laboratory using an intense ion beam. A gas bubble created inside a solid metal may collapse by driving it with an intense ion beam. The melted metal will compress the gas bubble and supply extra energy to it. Simulations show that the spherical implosion ratio can be about 5 and at the stagnation point, the maximum density, temperature and pressure inside the gas bubble can go up to nearly 2 times solid density, 10 eV and a few megabar (Mbar) respectively. The proposed experiment is the first to permit access into the Mbar regime with existing or near-term ion facilities, and opens up possibilities for new physics gained through careful comparisons of simulations with measurements of quantities like stagnation radius, peak temperature and peak pressure at the metal wall.
Date: April 13, 2011
Creator: Ng, S. F.; Barnard, J. J.; Leung, P. T. & Yu, S. S.
Object Type: Article
System: The UNT Digital Library
Study of Heterogeneouse Processes Related to the Chemistry of Tropospheric Oxidants and Aerosols (open access)

Study of Heterogeneouse Processes Related to the Chemistry of Tropospheric Oxidants and Aerosols

The objective of the studies was to elucidate the heterogeneous chemistry of tropospheric aerosols. Experiments were designed to measure both specifically needed parameters, and to obtain systematic data required to build a fundamental understanding of the nature of gas-surface physical and chemical interactions
Date: February 13, 2013
Creator: Davidovits, Paul; Worsnop, D R; Jayne, J T & Colb, C E
Object Type: Report
System: The UNT Digital Library
GLADE Global Liquid Argon Detector Experiment: a letter of intent to FNAL (open access)

GLADE Global Liquid Argon Detector Experiment: a letter of intent to FNAL

The recent measurements of the {theta}{sub 13} mixing angle, which controls the observable size of any CP violation effects, open a window of opportunity to take advantage of the world's most powerful existing neutrino beam together with recent successes in development of the ultimate detector technology for the detection of electron neutrinos : a liquid argon (LAr) time projection chamber. During this proposed project a 5kt LAr detector (GLADE) will be developed by European groups to be put in a cryostat in the NuMI neutrino beam at Fermi National Accelerator Laboratory in the US and will start taking data in 3-5 years time to address the neutrino mass ordering. The successful fruition of this project, along with nominal exposure at NO{nu}A and T2K, together with information from double beta decay experiments could ascertain that neutrinos are Dirac particles in the next decade.
Date: May 13, 2012
Creator: Thomas, Jennifer
Object Type: Report
System: The UNT Digital Library
Toward TW-Level, Hard X-Ray Pulses at LCLS (open access)

Toward TW-Level, Hard X-Ray Pulses at LCLS

Coherent diffraction imaging of complex molecules such as proteins requires a large number (e.g., {approx} 10{sup 13}/pulse) of hard X-ray photons within a time scale of {approx} 10 fs or less. This corresponds to a peak power of {approx} 1 TW, much larger than that currently generated by LCLS or other proposed X-ray free electron lasers (FELs). We study the feasibility of producing such pulses using a LCLS-like, low charge electron beam, as will be possible in the LCLS-II upgrade project, employing a configuration beginning with a SASE amplifier, followed by a 'self-seeding' crystal monochromator, and finishing with a long tapered undulator. Our results suggest that TW-level output power at 8.3 keV is possible from a total undulator system length around 200 m. In addition power levels larger than 100 GW are generated at the third harmonic. We present a tapering strategy that extends the original 'resonant particle' formalism by optimizing the transport lattice to maximize optical guiding and enhance net energy extraction. We discuss the transverse and longitudinal coherence properties of the output radiation pulse and the expected output pulse energy sensitivity, both to taper errors and to power fluctuations on the monochromatized SASE seed.
Date: December 13, 2011
Creator: Fawley, W. M.; Frisch, J.; Huang, Z.; Jiao, Y.; Nuhn, H. D.; Pellegrini, C. et al.
Object Type: Article
System: The UNT Digital Library
The National Ignition Facility and the Promise of Inertial Fusion Energy (open access)

The National Ignition Facility and the Promise of Inertial Fusion Energy

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational. The NIF is the world's most energetic laser system capable of producing 1.8 MJ and 500 TW of ultraviolet light. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in planetary interiors and stellar environments. On September 29, 2010, the first integrated ignition experiment was conducted, demonstrating the successful coordination of the laser, cryogenic target system, array of diagnostics and infrastructure required for ignition demonstration. In light of this strong progress, the U.S. and international communities are examining the implication of NIF ignition for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a laser with 10% electrical-optical efficiency, as well as further development and advances in large-scale target fabrication, target injection, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in the 10- to 15-year time frame. …
Date: December 13, 2010
Creator: Moses, E I
Object Type: Article
System: The UNT Digital Library
Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies (open access)

Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.
Date: September 13, 2011
Creator: Wetovsky, Marvin A.; Patterson, Eileen F. & Sandoval, Marisa N.
Object Type: Article
System: The UNT Digital Library
Plasma-Accelerated Flyer-Plates for Equation of State Studies (open access)

Plasma-Accelerated Flyer-Plates for Equation of State Studies

None
Date: February 13, 2012
Creator: Fratanduono, D E; Smith, R F; Boehly, T R; Eggert, J H; Braun, D G & Collins, G W
Object Type: Article
System: The UNT Digital Library
A Distributed Electrochemistry Modeling Tool for Simulating SOFC Performance and Degradation (open access)

A Distributed Electrochemistry Modeling Tool for Simulating SOFC Performance and Degradation

This report presents a distributed electrochemistry (DEC) model capable of investigating the electrochemistry and local conditions with the SOFC MEA based on the local microstructure and multi-physics. The DEC model can calculate the global current-voltage (I-V) performance of the cell as determined by the spatially varying local conditions through the thickness of the electrodes and electrolyte. The simulation tool is able to investigate the electrochemical performance based on characteristics of the electrode microstructure, such as particle size, pore size, electrolyte and electrode phase volume fractions, and triple-phase-boundary length. It can also investigate performance as affected by fuel and oxidant gas flow distributions and other environmental/experimental conditions such as temperature and fuel gas composition. The long-term objective for the DEC modeling tool is to investigate factors that cause electrode degradation and the decay of SOFC performance which decrease longevity.
Date: October 13, 2011
Creator: Recknagle, Kurtis P.; Ryan, Emily M. & Khaleel, Mohammad A.
Object Type: Report
System: The UNT Digital Library
ARM Lead Mentor Selection Process (open access)

ARM Lead Mentor Selection Process

The ARM Climate Research Facility currently operates more than 300 instrument systems that provide ground-based observations of the atmospheric column. To keep ARM at the forefront of climate observations, the ARM infrastructure depends heavily on instrument scientists and engineers, also known as Instrument Mentors. Instrument Mentors must have an excellent understanding of in situ and remote-sensing instrumentation theory and operation and have comprehensive knowledge of critical scale-dependent atmospheric processes. They also possess the technical and analytical skills to develop new data retrievals that provide innovative approaches for creating research-quality data sets.
Date: March 13, 2013
Creator: Sisterson, DL
Object Type: Text
System: The UNT Digital Library
The UA9 Experimental Layout (open access)

The UA9 Experimental Layout

None
Date: June 13, 2012
Creator: Scandale, W.; Arduini, G.; Assmann, R.; Bracco, C.; Cerutti, F.; Christiansen, J. et al.
Object Type: Article
System: The UNT Digital Library
Femtosecond X-ray Pulse Temporal Characterization in Free-Electron Lasers Using a Transverse Deflector (open access)

Femtosecond X-ray Pulse Temporal Characterization in Free-Electron Lasers Using a Transverse Deflector

We propose a novel method to characterize the temporal duration and shape of femtosecond x-ray pulses in a free-electron laser (FEL) by measuring the time-resolved electron-beam energy loss and energy spread induced by the FEL process, with a transverse radio-frequency deflector located after the undulator. Its merits are simplicity, high resolution, wide diagnostic range, and non-invasive to user operation. When the system is applied to the Linac Coherent Light Source, the first hard x-ray free-electron laser in the world, it can provide single-shot measurements on the electron beam and x-ray pulses with a resolution on the order of 1-2 femtoseconds rms.
Date: December 13, 2011
Creator: Ding, Y.; Behrens, C.; Emma, P.; Frisch, J.; Huang, Z.; Loos, H. et al.
Object Type: Article
System: The UNT Digital Library
Dalitz Plot Analysis of the Charmless Three Body Decay B+- to K+- K+- K-+ Utilising Data Recorded by the BaBar Experiment (open access)

Dalitz Plot Analysis of the Charmless Three Body Decay B+- to K+- K+- K-+ Utilising Data Recorded by the BaBar Experiment

None
Date: May 13, 2013
Creator: Barrett, Matthew
Object Type: Article
System: The UNT Digital Library
Collaborative Research: Robust Climate Projections and Stochastic Stability of Dynamical Systems (open access)

Collaborative Research: Robust Climate Projections and Stochastic Stability of Dynamical Systems

The project was completed along the lines of the original proposal, with additional elements arising as new results were obtained. The originally proposed three thrusts were expanded to include an additional, fourth one. (i) The e#11;ffects of stochastic perturbations on climate models have been examined at the fundamental level by using the theory of deterministic and random dynamical systems, in both #12;nite and in#12;nite dimensions. (ii) The theoretical results have been implemented #12;first on a delay-diff#11;erential equation (DDE) model of the El-Nino/Southern-Oscillation (ENSO) phenomenon. (iii) More detailed, physical aspects of model robustness have been considered, as proposed, within the stripped-down ICTP-AGCM (formerly SPEEDY) climate model. This aspect of the research has been complemented by both observational and intermediate-model aspects of mid-latitude and tropical climate. (iv) An additional thrust of the research relied on new and unexpected results of (i) and involved reduced-modeling strategies and associated prediction aspects have been tested within the team's empirical model reduction (EMR) framework. Finally, more detailed, physical aspects have been considered within the stripped-down SPEEDY climate model. The results of each of these four complementary e#11;fforts are presented in the next four sections, organized by topic and by the team members concentrating on the topic …
Date: October 13, 2011
Creator: Ghil, Michael; McWilliams, James; Neelin, J. David; Zaliapin, Ilya; Chekroun, Mickael; Kondrashov, Dmitri et al.
Object Type: Report
System: The UNT Digital Library
Ecological Monitoring and Compliance Program 2011 Report (open access)

Ecological Monitoring and Compliance Program 2011 Report

The Ecological Monitoring and Compliance (EMAC) Program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, monitors the ecosystem of the Nevada National Security Site and ensures compliance with laws and regulations pertaining to NNSS biota. This report summarizes the program's activities conducted by National Security Technologies, LLC, during calendar year 2011. Program activities included (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem monitoring, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat restoration monitoring, and (g) monitoring of the Nonproliferation Test and Evaluation Complex. During 2011, all applicable laws, regulations, and permit requirements were met, enabling EMAC to achieve its intended goals and objectives.
Date: June 13, 2012
Creator: Hansen, D. J., Anderson, D. C., Hall, D. B., Greger, P. D., Ostler, W. K.
Object Type: Report
System: The UNT Digital Library
Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings (open access)

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings

An increasing number of energy efficient appliances operate on direct current (DC) internally, offering the potential to use DC from renewable energy systems directly and avoiding the losses inherent in converting power to alternating current (AC) and back. This paper investigates that potential for net-metered residences with on-site photovoltaics (PV) by modeling the net power draw of the ‘direct-DC house’ with respect to today’s typical configuration, assuming identical DC-internal loads. Power draws were modeled for houses in 14 U.S. cities, using hourly, simulated PV-system output and residential loads. The latter were adjusted to reflect a 33% load reduction, representative of the most efficient DC-internal technology, based on an analysis of 32 electricity end-uses. The model tested the effect of climate, electric vehicle (EV) loads, electricity storage, and load shifting on electricity savings; a sensitivity analysis was conducted to determine how future changes in the efficiencies of power system components might affect savings potential. Based on this work, we estimate that net-metered PV residences could save 5% of their total electricity load for houses without storage and 14% for houses with storage. Based on residential PV penetration projections for year 2035 obtained from the National Energy Modeling System (2.7% for the …
Date: October 13, 2011
Creator: Garbesi, Karina; Vossos, Vagelis; Sanstad, Alan & Burch, Gabriel
Object Type: Report
System: The UNT Digital Library
SEQUESTRATION OF METALS IN ACTIVE CAP MATERIALS: A LABORATORY AND NUMERICAL EVALUATION (open access)

SEQUESTRATION OF METALS IN ACTIVE CAP MATERIALS: A LABORATORY AND NUMERICAL EVALUATION

Active capping involves the use of capping materials that react with sediment contaminants to reduce their toxicity or bioavailability. Although several amendments have been proposed for use in active capping systems, little is known about their long-term ability to sequester metals. Recent research has shown that the active amendment apatite has potential application for metals contaminated sediments. The focus of this study was to evaluate the effectiveness of apatite in the sequestration of metal contaminants through the use of short-term laboratory column studies in conjunction with predictive, numerical modeling. A breakthrough column study was conducted using North Carolina apatite as the active amendment. Under saturated conditions, a spike solution containing elemental As, Cd, Co, Se, Pb, Zn, and a non-reactive tracer was injected into the column. A sand column was tested under similar conditions as a control. Effluent water samples were periodically collected from each column for chemical analysis. Relative to the non-reactive tracer, the breakthrough of each metal was substantially delayed by the apatite. Furthermore, breakthrough of each metal was substantially delayed by the apatite compared to the sand column. Finally, a simple 1-D, numerical model was created to qualitatively predict the long-term performance of apatite based on the …
Date: February 13, 2012
Creator: Dixon, K. & Knox, A.
Object Type: Article
System: The UNT Digital Library
Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 2010 (open access)

Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 2010

Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants ([NESHAP]; U.S. Code of Federal Regulations, Title 40, Part 61, Subpart H) and Washington Administrative Code 246-247: Radiation Protection - Air Emissions. In these NESHAP assessments, potential unabated off-site doses were evaluated for emission locations at buildings that are part of the consolidated laboratory campus of the Pacific Northwest National Laboratory. This report describes the inventory-based methods and provides the results for the NESHAP assessment performed in 2010.
Date: May 13, 2011
Creator: Ballinger, Marcel Y.; Gervais, Todd L. & Barnett, J. M.
Object Type: Report
System: The UNT Digital Library
Aerogel-Based Insulation for High-Temperature Industrial Processes (open access)

Aerogel-Based Insulation for High-Temperature Industrial Processes

Under this program, Aspen Aerogels has developed an industrial insulation called Pyrogel HT, which is 4-5 times more thermally efficient than current non-aerogel technology. Derived from nanoporous silica aerogels, Pyrogel HT was specifically developed to address a high temperature capability gap not currently met with Aspen Aerogels{trademark} flagship product, Pyrogel XT. Pyrogel XT, which was originally developed on a separate DOE contract (DE-FG36-06GO16056), was primarily optimized for use in industrial steam processing systems, where application temperatures typically do not exceed 400 C. At the time, further improvements in thermal performance above 400 C could not be reasonably achieved for Pyrogel XT without significantly affecting other key material properties using the current technology. Cumulative sales of Pyrogel HT into domestic power plants should reach $125MM through 2030, eventually reaching about 10% of the total insulation market share in that space. Global energy savings would be expected to scale similarly. Over the same period, these sales would reduce domestic energy consumption by more than 65 TBtu. Upon branching out into all industrial processes in the 400 C-650 C regime, Pyrogel HT would reach annual sales levels of $150MM, with two-thirds of that being exported.
Date: October 13, 2011
Creator: Evans, Owen
Object Type: Report
System: The UNT Digital Library
kt-factorization for Hard Processes in Nuclei (open access)

kt-factorization for Hard Processes in Nuclei

Two widely proposed kt-dependent gluon distributions in the small-x saturation regime are investigated using two particle back-to-back correlations in high energy scattering processes. The Weizsacker-Williams gluon distribution, interpreted as the number density of gluon inside the nucleus, is studied in the quark-antiquark jet correlation in deep inelastic scattering. On the other hand, the unintegrated gluon distribution, defined as the Fourier transform of the color-dipole cross section, is probed in the direct photon-jet correlation in pA collisions. Dijet-correlation in pA collisions depends on both gluon distributions through combination and convolution in the large Nc limit. We calculate these processes in two approaches: the transverse momentum dependent factorization approach and the color-dipole/color glass condensate formalism, and they agree with each other completely.
Date: September 13, 2010
Creator: Dominguez, Fabio; Xiao, Bo-Wen & Yuan, Feng
Object Type: Article
System: The UNT Digital Library
Estimating High Level Waste Mixing Performance in Hanford Double Shell Tanks (open access)

Estimating High Level Waste Mixing Performance in Hanford Double Shell Tanks

The ability to effectively mix, sample, certify, and deliver consistent batches of high level waste (HLW) feed from the Hanford double shell tanks (DSTs) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. The Department of Energy's (DOE's) Tank Operations Contractor (TOC), Washington River Protection Solutions (WRPS) is currently demonstrating mixing, sampling, and batch transfer performance in two different sizes of small-scale DSTs. The results of these demonstrations will be used to estimate full-scale DST mixing performance and provide the key input to a programmatic decision on the need to build a dedicated feed certification facility. This paper discusses the results from initial mixing demonstration activities and presents data evaluation techniques that allow insight into the performance relationships of the two small tanks. The next steps, sampling and batch transfers, of the small scale demonstration activities are introduced. A discussion of the integration of results from the mixing, sampling, and batch transfer tests to allow estimating full-scale DST performance is presented.
Date: January 13, 2011
Creator: Thien, M. G.; Greer, D. A. & Townson, P.
Object Type: Article
System: The UNT Digital Library
THIRD STATUS REPORT: TESTING OF AGED SOFTWOOD FIBERBOARD MATERIAL FOR THE 9975 SHIPPING PACKAGE (open access)

THIRD STATUS REPORT: TESTING OF AGED SOFTWOOD FIBERBOARD MATERIAL FOR THE 9975 SHIPPING PACKAGE

Samples have been prepared from a 9975 lower fiberboard subassembly fabricated from softwood fiberboard. Physical, mechanical and thermal properties have been measured following varying periods of conditioning in each of several environments. These tests have been conducted in the same manner as previous testing on cane fiberboard samples. Overall, similar aging trends are observed for softwood and cane fiberboard samples, with a few differences. There is no clear trend thus far to indicate one material ages in a manner significantly different from the other material. Some softwood fiberboard properties degrade faster in some environments, while cane fiberboard degrades faster with regards to other properties and environments. Given the limited aging time accumulated to date in the elevated humidity environments, it is recommended that aging and testing of softwood fiberboard continue for another year. Post-conditioning data have been measured on samples from a single softwood fiberboard assembly, and baseline data are also available from a limited number of vendor-provided samples. This provides minimal information on the possible sample-to-sample variation exhibited by softwood fiberboard. Data to date are generally consistent with the range seen in cane fiberboard, but some portions of the data trends are skewed toward the lower end of that …
Date: December 13, 2011
Creator: Daugherty, W.
Object Type: Report
System: The UNT Digital Library
Tests of Timing Properties of Silicon Photomultipliers (open access)

Tests of Timing Properties of Silicon Photomultipliers

None
Date: September 13, 2011
Creator: Ronzhin, A.; Albrow, M.; /Fermilab; Byrum, K.; /Argonne; Demarteau, M. et al.
Object Type: Article
System: The UNT Digital Library