Study on Auto-DR and Pre-Cooling of Commercial Buildings with Thermal Mass in California (open access)

Study on Auto-DR and Pre-Cooling of Commercial Buildings with Thermal Mass in California

This paper discusses how to optimize pre-cooling strategies for buildings in a hot California climate zone with the Demand Response Quick Assessment Tool (DRQAT), a building energy simulation tool. This paper outlines the procedure used to develop and calibrate DRQAT simulation models, and applies this procedure to eleven field test buildings. The results of a comparison between the measured demand savings during the peak period and the savings predicted by the simulation model indicate that the predicted demand shed match well with measured data for the corresponding auto-demand response (Auto-DR) days. The study shows that the accuracy of the simulation models is greatly improved after calibrating the initial models with measured data. These improved models can be used to predict load reductions for automated demand response events. The simulation results were compared with field test data to confirm the actual effect of demand response strategies. Results indicate that the optimal demand response strategies worked well for most of the buildings tested in this hot climate zone.
Date: January 9, 2010
Creator: Yin, Rongxin; Xu, Peng; Piette, Mary Ann & Kiliccote, Sila
Object Type: Article
System: The UNT Digital Library
Design of Genomic Signatures of Pathogen Identification & Characterization (open access)

Design of Genomic Signatures of Pathogen Identification & Characterization

This chapter will address some of the many issues associated with the identification of signatures based on genomic DNA/RNA, which can be used to identify and characterize pathogens for biodefense and microbial forensic goals. For the purposes of this chapter, we define a signature as one or more strings of contiguous genomic DNA or RNA bases that are sufficient to identify a pathogenic target of interest at the desired resolution and which could be instantiated with particular detection chemistry on a particular platform. The target may be a whole organism, an individual functional mechanism (e.g., a toxin gene), or simply a nucleic acid indicative of the organism. The desired resolution will vary with each program's goals but could easily range from family to genus to species to strain to isolate. The resolution may not be taxonomically based but rather pan-mechanistic in nature: detecting virulence or antibiotic-resistance genes shared by multiple microbes. Entire industries exist around different detection chemistries and instrument platforms for identification of pathogens, and we will only briefly mention a few of the techniques that we have used at Lawrence Livermore National Laboratory (LLNL) to support our biosecurity-related work since 2000. Most nucleic acid based detection chemistries involve …
Date: February 9, 2010
Creator: Slezak, T.; Gardner, S.; Allen, J.; Vitalis, E. & Jaing, C.
Object Type: Book
System: The UNT Digital Library
Ergonomics and Engineering - Designing for the perfect fit...even for Cinderella's glass slipper (open access)

Ergonomics and Engineering - Designing for the perfect fit...even for Cinderella's glass slipper

None
Date: February 9, 2010
Creator: Alexandre, Melanie & Naca, Christine
Object Type: Report
System: The UNT Digital Library
Final Assembly of Cryogenic Targets for NIF (open access)

Final Assembly of Cryogenic Targets for NIF

None
Date: February 9, 2010
Creator: Swisher, M F; Montesanti, R C; Alger, E T; Castro, C; Dzenitis, E G; Edwards, G J et al.
Object Type: Article
System: The UNT Digital Library
An imaging proton spectrometer for short-pulse laser plasma experiments (open access)

An imaging proton spectrometer for short-pulse laser plasma experiments

Ultra intense short pulse laser pulses incident on solid targets can generate energetic protons. In additions to their potentially important applications such as in cancer treatments and proton fast ignition, these protons are essential to understand the complex physics of intense laser plasma interaction. To better understand these laser-produced protons, we designed and constructed a novel, spatially imaging proton spectrometer that will not only provide at high-resolution the energy distribution, but also the protons angular characteristics. The information obtained from this spectrometer compliments those from other methods using radiochromic film packs, CR39 films and other protons spectrometers. The basic characterizations and example data from this diagnostics will be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, as part of the Cimarron project funded by LDRD-09SI11.
Date: February 9, 2010
Creator: Chen, H.; Hazi, A.; van Maren, R.; Chen, S.; Fuchs, J.; Gauthier, M. et al.
Object Type: Article
System: The UNT Digital Library
Laser supported solid state absorption fronts in silica (open access)

Laser supported solid state absorption fronts in silica

We develop a model based on simulation and experiment that explains the behavior of solid-state laser-supported absorption fronts generated in fused silica during high intensity (up to 5GW/cm{sup 2}) laser exposure. We find that the absorption front velocity is constant in time and is nearly linear in laser intensity. Further, this model can explain the dependence of laser damage site size on these parameters. This behavior is driven principally by the temperature-activated deep sub band-gap optical absorptivity, free electron transport and thermal diffusion in defect-free silica for temperatures up to 15,000K and pressures < 15GPa. The regime of parameter space critical to this problem spans and extends that measured by other means. It serves as a platform for understanding general laser-matter interactions in dielectrics under a variety of conditions.
Date: February 9, 2010
Creator: Carr, C W & Bude, J D
Object Type: Article
System: The UNT Digital Library
NIF Target Assembly Metrology and Results (open access)

NIF Target Assembly Metrology and Results

None
Date: February 9, 2010
Creator: Alger, E T; Kroll, J J; Hughes, J; Dzenitis, E G; Montesanti, R; Swisher, M et al.
Object Type: Article
System: The UNT Digital Library
A Constitutive Model for Long Time Duration Mechanical Behavior in Insensitive High Explosives (open access)

A Constitutive Model for Long Time Duration Mechanical Behavior in Insensitive High Explosives

An anisotropic constitutive model for the long term dimensional stability of insensitive high explosives is proposed. Elastic, creep, thermal, and ratchet growth strains are developed. Pressure and temperature effects are considered. The constitutive model is implemented in an implicit finite element code and compared to a variety of experimental data.
Date: March 9, 2010
Creator: Darnell, I M; Oh, S; Hrousis, C A; Cunningham, B J & Gagliardi, F J
Object Type: Article
System: The UNT Digital Library
Deflagration Rates and Molecular Bonding Trends of Statically Compressed Secondary Explosives (open access)

Deflagration Rates and Molecular Bonding Trends of Statically Compressed Secondary Explosives

We discuss our measurements of the chemical reaction propagation rate as a function of pressure. Materials investigated have included CL-20, HMX, TATB, and RDX crystalline powders, LX-04, Comp B, and nitromethane. The anomalous correspondence between crystal structure, including in some instances isostructural phase transitions, on pressure-dependant RPRs of TATB, HMX, Nitromethane, CL-20, and PETN have been elucidated using micro-IR and -Raman spectroscopies. Here we specifically highlight pressure-dependent physicochemical mechanisms affecting the deflagration rate of nitromethane and epsilon-CL-20. We find that pressure induced splitting of symmetric stretch NO{sub 2} vibrations can signal the onset of increasingly more rapid combustion reactions.
Date: March 9, 2010
Creator: Zaug, J M; Foltz, M F & Hart, E
Object Type: Article
System: The UNT Digital Library
Facility Energy Decision System (FEDS) Assessment Report for US Army Garrison, Japan - Honshu Installations (open access)

Facility Energy Decision System (FEDS) Assessment Report for US Army Garrison, Japan - Honshu Installations

This report documents an assessment was performed by a team of engineers from Pacific Northwest National Laboratory (PNNL) under contract to the Installation Management Command (IMCOM) Pacific Region Office (PARO). The effort used the Facility Energy Decision System (FEDS) model to determine how energy is consumed at five U.S. Army Garrison-Japan (USAG-J) installations in the Honshu area, identify the most cost-effective energy retrofit measures, and calculate the potential energy and cost savings.
Date: March 9, 2010
Creator: Kora, Angela R.; Brown, Daryl R. & Dixon, Douglas R.
Object Type: Report
System: The UNT Digital Library
GEOCHEMICAL TESTING AND MODEL DEVELOPMENT - RESIDUAL TANK WASTE TEST PLAN (open access)

GEOCHEMICAL TESTING AND MODEL DEVELOPMENT - RESIDUAL TANK WASTE TEST PLAN

This Test Plan describes the testing and chemical analyses release rate studies on tank residual samples collected following the retrieval of waste from the tank. This work will provide the data required to develop a contaminant release model for the tank residuals from both sludge and salt cake single-shell tanks. The data are intended for use in the long-term performance assessment and conceptual model development.
Date: March 9, 2010
Creator: KJ, CANTRELL & MP, CONNELLY
Object Type: Report
System: The UNT Digital Library
Major Effects in the Thermodynamics of Detonation Products: Phase Segregation versus Ionic Dissociation (open access)

Major Effects in the Thermodynamics of Detonation Products: Phase Segregation versus Ionic Dissociation

Water (H{sub 2}O) and nitrogen (N{sub 2}) are major detonation products of high explosives and it has long been conjectured that they may phase segregate at high enough temperatures and pressures to influence detonation properties of common explosives. We analyze the phase diagram of H{sub 2}O-N{sub 2} mixtures using a thermodynamic theory for polar-nonpolar mixtures and find that phase segregation is unlikely to occur above approximately 1600K. Therefore, H{sub 2}O-N{sub 2} immiscibility is not likely to be relevant for detonation predictions. We propose instead that the high pressure ionic dissociation of water plays an important role in detonation, and model it using a new ionic thermodynamics. We employ this model in chemical equilibrium calculations of standard high explosives, e.g. PETN, HMX and RDX, and find that it performs very well under a wide range of conditions. Thus, although it may require further development, it is likely that explicitly ionic thermodynamics will become a standard tool for explosives modeling.
Date: March 9, 2010
Creator: Bastea, S & Fried, L E
Object Type: Article
System: The UNT Digital Library
Molecular Interactions of Plutonium(VI) with Synthetic Manganese-Substituted Goethite (open access)

Molecular Interactions of Plutonium(VI) with Synthetic Manganese-Substituted Goethite

Plutonium(VI) sorption on the surface of well-characterized synthetic manganese-substituted goethite minerals (Fe1-xMnxOOH) was studied using X-ray absorption spectroscopy. We chose to study the influence of manganese as a minor component in goethite, because goethite rarely exists as a pure phase in nature. Manganese X-ray absorption near-edge structure measurements indicated that essentially all the Mn in the goethite existed as Mn(III), even though Mn was added during mineral synthesis as Mn(II). Importantly, energy dispersive X-ray analysis demonstrated that Mn did not exist as discrete phases and that it was homogeneously mixed into the goethite to within the limit of detection of the method. Furthermore, Mössbauer spectra demonstrated that all Fe existed as Fe(III), with no Fe(II) present. Plutonium(VI) sorption experiments were conducted open to air and no attempt was made to exclude carbonate. The use of X-ray absorption spectroscopy allows us to directly and unambiguously measure the oxidation state of plutonium in situ at the mineral surface. Plutonium X-ray absorption near-edge structure measurements carried out on these samples showed that Pu(VI) was reduced to Pu(IV) upon contact with the mineral. This reduction appears to be strongly correlated with mineral solution pH, coinciding with pH transitions across the point of zero charge …
Date: March 9, 2010
Creator: Hu, Yung-Jin; Schwaiger, Luna Kestrel; Booth, Corwin H.; Kukkadapu, Ravi K.; Cristiano, Elena; Kaplan, Daniel et al.
Object Type: Article
System: The UNT Digital Library
On The Anomalous Fast Ion Energy Diffusion in Toroidal Plasmas Due to Cavity Modes (open access)

On The Anomalous Fast Ion Energy Diffusion in Toroidal Plasmas Due to Cavity Modes

An enormous wave-particle diffusion coefficient along paths suitable for alpha channeling had been deduced in mode converted ion Bernstein wave experiments on Tokamak Fusion Test Reactor (TFTR) the only plausible explanation advanced for such a large diffusion coefficient was the excitation of internal cavity modes which induce particle diffusion along identical diffusion paths, but at much higher rates. Although such a mode was conjectured, it was never observed. However, recent detailed observations of high frequency compressional Alfven eigenmodes (CAEs) on the National Spherical torus Experiment (NSTX) indirectly support the existence of the related conjectured modes on TFTR. The eigenmodes responsible for the high frequency magnetic activity can be identified as CAEs through the polarization of the observed magnetic field oscillations in NSTX and through a comparison with the theoretically derived freuency dispersion relation. Here, we show how these recent observations of high frequency CAEs lend support to this explanation of the long-standing puzzle of anomalous fast ion energy diffusion on TFTR. The support of the conjecure that these internal modes could have caused the remarkable ion energy diffusion on TFTR carries significant and favorable implications for the possibilities in achieving the alpha channeling effect with small injected power in a …
Date: March 9, 2010
Creator: Gorelenkov, N. N.; Fisch, N. J. & Fredrickson, E.
Object Type: Report
System: The UNT Digital Library
Photoacoustically Measured Speeds of Sound and the Equation of State of HBO2: On Understanding Detonation with Boron Fuel (open access)

Photoacoustically Measured Speeds of Sound and the Equation of State of HBO2: On Understanding Detonation with Boron Fuel

Elucidation of geodynamic, geochemical, and shock induced processes is limited by challenges to accurately determine molecular fluid equations of state (EOS). High pressure liquid state reactions of carbon species underlie physiochemical mechanisms such as differentiation of planetary interiors, deep carbon sequestration, propellant deflagration, and shock chemistry. In this proceedings paper we introduce a versatile photoacoustic technique developed to measure accurate and precise speeds of sound (SoS) of high pressure molecular fluids and fluid mixtures. SoS of an intermediate boron oxide, HBO{sub 2} are measured up to 0.5 GPa along the 277 C isotherm. A polarized exponential-6 interatomic potential form, parameterized using our SoS data, enables EOS determinations and corresponding semi-empirical evaluations of >2000 C thermodynamic states including energy release from bororganic formulations. Our thermochemical model propitiously predicts boronated hydrocarbon shock Hugoniot results.
Date: March 9, 2010
Creator: Zaug, J M; Bastea, S; Crowhurst, J; Armstrong, M; Fried, L & Teslich, N
Object Type: Article
System: The UNT Digital Library
Probabilistic Threshold Criterion (open access)

Probabilistic Threshold Criterion

The Probabilistic Shock Threshold Criterion (PSTC) Project at LLNL develops phenomenological criteria for estimating safety or performance margin on high explosive (HE) initiation in the shock initiation regime, creating tools for safety assessment and design of initiation systems and HE trains in general. Until recently, there has been little foundation for probabilistic assessment of HE initiation scenarios. This work attempts to use probabilistic information that is available from both historic and ongoing tests to develop a basis for such assessment. Current PSTC approaches start with the functional form of the James Initiation Criterion as a backbone, and generalize to include varying areas of initiation and provide a probabilistic response based on test data for 1.8 g/cc (Ultrafine) 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and LX-17 (92.5% TATB, 7.5% Kel-F 800 binder). Application of the PSTC methodology is presented investigating the safety and performance of a flying plate detonator and the margin of an Ultrafine TATB booster initiating LX-17.
Date: March 9, 2010
Creator: Gresshoff, M & Hrousis, C A
Object Type: Article
System: The UNT Digital Library
Room Temperature Magnetic Barrier Layers in Magnetic Tunnel Junctions (open access)

Room Temperature Magnetic Barrier Layers in Magnetic Tunnel Junctions

We investigate the spin transport and interfacial magnetism of magnetic tunnel junctions with highly spin polarized LSMO and Fe3O4 electrodes and a ferrimagnetic NiFe2O4 (NFO) barrier layer. The spin dependent transport can be understood in terms of magnon-assisted spin dependent tunneling where the magnons are excited in the barrier layer itself. The NFO/Fe3O4 interface displays strong magnetic coupling, while the LSMO/NFO interface exhibits clear decoupling as determined by a combination of X-ray absorption spectroscopy and X-ray magnetic circular dichroism. This decoupling allows for distinct parallel and antiparallel electrode states in this all-magnetic trilayer. The spin transport of these devices, dominated by the NFO barrier layer magnetism, leads to a symmetric bias dependence of the junction magnetoresistance at all temperatures.
Date: March 9, 2010
Creator: Nelson-Cheeseman, B. B.; Wong, F. J.; Chopdekar, R. V.; Arenholz, E. & Suzuki, Y.
Object Type: Article
System: The UNT Digital Library
SLUDGE TREATMENT PROJECT KOP CONCEPTUAL DESIGN CONTROL DECISION REPORT (open access)

SLUDGE TREATMENT PROJECT KOP CONCEPTUAL DESIGN CONTROL DECISION REPORT

This control decision addresses the Knock-Out Pot (KOP) Disposition KOP Processing System (KPS) conceptual design. The KPS functions to (1) retrieve KOP material from canisters, (2) remove particles less than 600 {micro}m in size and low density materials from the KOP material, (3) load the KOP material into Multi-Canister Overpack (MCO) baskets, and (4) stage the MCO baskets for subsequent loading into MCOs. Hazard and accident analyses of the KPS conceptual design have been performed to incorporate safety into the design process. The hazard analysis is documented in PRC-STP-00098, Knock-Out Pot Disposition Project Conceptual Design Hazard Analysis. The accident analysis is documented in PRC-STP-CN-N-00167, Knock-Out Pot Disposition Sub-Project Canister Over Lift Accident Analysis. Based on the results of these analyses, and analyses performed in support of MCO transportation and MCO processing and storage activities at the Cold Vacuum Drying Facility (CVDF) and Canister Storage Building (CSB), control decision meetings were held to determine the controls required to protect onsite and offsite receptors and facility workers. At the conceptual design stage, these controls are primarily defined by their safety functions. Safety significant structures, systems, and components (SSCs) that could provide the identified safety functions have been selected for the conceptual design. …
Date: March 9, 2010
Creator: CA, CARRO
Object Type: Report
System: The UNT Digital Library
SLUDGE TREATMENT PROJECT KOP DISPOSITION - THERMAL AND GAS ANALYSIS FOR THE COLD VACUUM DRYING FACILITY (open access)

SLUDGE TREATMENT PROJECT KOP DISPOSITION - THERMAL AND GAS ANALYSIS FOR THE COLD VACUUM DRYING FACILITY

The purpose of this document is to present conceptual design phase thermal process calculations that support the process design and process safety basis for the cold vacuum drying of K Basin KOP material. This document is intended to demonstrate that the conceptual approach: (1) Represents a workable process design that is suitable for development in preliminary design; and (2) Will support formal safety documentation to be prepared during the definitive design phase to establish an acceptable safety basis. The Sludge Treatment Project (STP) is responsible for the disposition of Knock Out Pot (KOP) sludge within the 105-K West (KW) Basin. KOP sludge consists of size segregated material (primarily canister particulate) from the fuel and scrap cleaning process used in the Spent Nuclear Fuel process at K Basin. The KOP sludge will be pre-treated to remove fines and some of the constituents containing chemically bound water, after which it is referred to as KOP material. The KOP material will then be loaded into a Multi-Canister Overpack (MCO), dried at the Cold Vacuum Drying Facility (CVDF) and stored in the Canister Storage Building (CSB). This process is patterned after the successful drying of 2100 metric tons of spent fuel, and uses the …
Date: March 9, 2010
Creator: JA, SWENSON; RD, CROWE; R, APTHORPE & MG, PLYS
Object Type: Report
System: The UNT Digital Library
Three-Dimensional Magnetohydrodynamic Simulation of Slapper Initiation Systems (open access)

Three-Dimensional Magnetohydrodynamic Simulation of Slapper Initiation Systems

Although useful information can be gleaned from 2D and even 1D simulations of slapper type initiation systems, these systems are inherently three-dimensional and therefore require full 3D representation to model all relevant details. Further, such representation provides additional insight into optimizing the design of such devices from a first-principles perspective and can thereby reduce experimental costs. We discuss in this paper several ongoing efforts in modeling these systems, our pursuit of validation, and extension of these methods to other systems. Our results show the substantial dependence upon highly accurate global equations of state and resistivity models in these analyses.
Date: March 9, 2010
Creator: Christensen, J S & Hrousis, C A
Object Type: Article
System: The UNT Digital Library
Tumor Engineering: The Other Face of Tissue Engineering (open access)

Tumor Engineering: The Other Face of Tissue Engineering

Advances in tissue engineering have been accomplished for years by employing biomimetic strategies to provide cells with aspects of their original microenvironment necessary to reconstitute a unit of both form and function for a given tissue.We believe that the most critical hallmark of cancer is loss of integration of architecture and function; thus, it stands to reason that similar strategies could be employed to understand tumor biology. In this commentary, we discuss work contributed by Fischbach-Teschl and colleagues to this special issue of Tissue Engineering in the context of 'tumor engineering', that is, the construction of complex cell culture models that recapitulate aspects of the in vivo tumor microenvironment to study the dynamics of tumor development, progression, and therapy on multiple scales. We provide examples of fundamental questions that could be answered by developing such models, and encourage the continued collaboration between physical scientists and life scientists not only for regenerative purposes, but also to unravel the complexity that is the tumor microenvironment. In 1993, Vacanti and Langer cast a spotlight on the growing gap between patients in need of organ transplants and the amount of available donor organs; they reaffirmed that tissue engineering could eventually address this problem by …
Date: March 9, 2010
Creator: Ghajar, Cyrus M & Bissell, Mina J
Object Type: Book
System: The UNT Digital Library
2010 MARINE MICROBES GORDON RESEARCH CONFERENCE (JULY 4-9, 2010 - TILTON SCHOOL, TILTON NH) (open access)

2010 MARINE MICROBES GORDON RESEARCH CONFERENCE (JULY 4-9, 2010 - TILTON SCHOOL, TILTON NH)

Marine microbes include representatives from all three kingdoms of life and collectively carry out virtually all forms of metabolisms found on the planet. Because of this metabolic and genetic diversity, these microbes mediate many of the reactions making up global biogeochemical cycles which govern the flow of energy and material in the biosphere. The goal of this conference is to bring together approaches and concepts from studies of microbial evolution, genomics, ecology, and oceanography in order to gain new insights into marine microbes and their biogeochemical functions. The integration of scales, from genes to global cycles, will result in a better understanding of marine microbes and of their contribution to the carbon cycle and other biogeochemical processes.
Date: April 9, 2010
Creator: Kirchman, David
Object Type: Article
System: The UNT Digital Library
Climate implications of carbonaceous aerosols:  An aerosol microphysical study using the GISS/MATRIX climate model (open access)

Climate implications of carbonaceous aerosols: An aerosol microphysical study using the GISS/MATRIX climate model

Recently, attention has been drawn towards black carbon aerosols as a likely short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and its climate interactions. Black carbon is directly released as particle into the atmosphere, but then interacts with other gases and particles through condensation and coagulation processes leading to further aerosol growth, aging and internal mixing. A detailed aerosol microphysical scheme, MATRIX, embedded within the global GISS modelE includes the above processes that determine the lifecycle and climate impact of aerosols. This study presents a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing. Our best estimate for net direct and indirect aerosol radiative forcing change is -0.56 W/m{sup 2} between 1750 and 2000. However, the direct and indirect aerosol effects are very sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing change can vary between -0.32 to -0.75 W/m{sup 2} depending on these carbonaceous particle properties. Assuming that sulfates, nitrates and secondary …
Date: April 9, 2010
Creator: Bauer, Susanne E.; Menon, Surabi; Koch, Dorothy; Bond, Tami & Tsigaridis, Kostas
Object Type: Article
System: The UNT Digital Library
Detailed Modeling, Design, and Evaluation of a Scalable Multi-level Checkpointing System (open access)

Detailed Modeling, Design, and Evaluation of a Scalable Multi-level Checkpointing System

High-performance computing (HPC) systems are growing more powerful by utilizing more hardware components. As the system mean-time-before-failure correspondingly drops, applications must checkpoint more frequently to make progress. However, as the system memory sizes grow faster than the bandwidth to the parallel file system, the cost of checkpointing begins to dominate application run times. A potential solution to this problem is to use multi-level checkpointing, which employs multiple types of checkpoints with different costs and different levels of resiliency in a single run. The goal is to design light-weight checkpoints to handle the most common failure modes and rely on more expensive checkpoints for less common, but more severe failures. While this approach is theoretically promising, it has not been fully evaluated in a large-scale, production system context. To this end we have designed a system, called the Scalable Checkpoint/Restart (SCR) library, that writes checkpoints to storage on the compute nodes utilizing RAM, Flash, or disk, in addition to the parallel file system. We present the performance and reliability properties of SCR as well as a probabilistic Markov model that predicts its performance on current and future systems. We show that multi-level checkpointing improves efficiency on existing large-scale systems and that …
Date: April 9, 2010
Creator: Moody, A T; Bronevetsky, G; Mohror, K M & de Supinski, B R
Object Type: Report
System: The UNT Digital Library