A Proof-of-Principle Echo-enabled Harmonic Generation Free Electron Laser Experiment at SLAC (open access)

A Proof-of-Principle Echo-enabled Harmonic Generation Free Electron Laser Experiment at SLAC

With the advent of X-ray Free Electron Lasers (FELs), new methods have been developed to extend capabilities at short wavelengths beyond Self-Amplified Spontaneous Emission (SASE). In particular, seeding of a FEL allows for temporal control of the radiation pulse and increases the peak brightness by orders of magnitude. Most recently, Gennady Stupakov and colleagues at SLAC proposed a new technique: Echo-Enabled Harmonic Generation (EEHG). Here a laser microbunches the beam in an undulator and the beam is sheared in a chicane. This process is repeated with a second laser, undulator and chicane. The interplay between these allows a seeding of the X-ray laser up to the 100th harmonic of the first laser. After introducing the physics of FELs and the EEHG seeding technique, we describe contributions to the experimental effort. We will present detailed studies of the experiment including the choice of parameters and their optimization, the emittance effect, spontaneous emission in the undulators, the second laser phase effect, and measurements of the jitter between RF stations. Finally, the status and preliminary results of the Echo-7 experiment will be outlined.
Date: January 6, 2012
Creator: Pernet, Pierre-Louis
System: The UNT Digital Library
Rhodium mediated bond activation: from synthesis to catalysis (open access)

Rhodium mediated bond activation: from synthesis to catalysis

Recently, our lab has developed monoanionic tridentate ligand, To{sup R}, showing the corresponding coordination chemistry and catalyst reactivity of magnesium, zirconium, zinc and iridium complexes. This thesis details synthetic chemistry, structural study and catalytic reactivity of the To{sup R}-supported rhodium compounds. Tl[To{sup R}] has been proved to be a superior ligand transfer agent for synthesizing rhodium complexes. The salt metathesis route of Tl[To{sup M}] with [Rh({mu}-Cl)(CO)]{sub 2} and [Rh({mu}- Cl)(COE)]{sub 2} gives To{sup M}Rh(CO){sub 2} (2.2) and To{sup M}RhH({eta}{sup 3}-C{sub 8}H{sub 13}) (3.1) respectively while Tl[To{sup P}] with [Rh({mu}-Cl)(CO)]{sub 2} affords To{sup P}Rh(CO){sub 2} (2.3). 2.2 reacts with both strong and weak electrophiles, resulting in the oxazoline N-attacked and the metal center-attacked compounds correspondingly. Using one of the metal center-attacked electrophiles, 2.3 was demonstrated to give high diastereoselectivity. Parallel to COE allylic C-H activation complex 3.1, the propene and allylbenzene allylic C-H activation products have also been synthesized. The subsequent functionalization attempts have been examined by treating with Brønsted acids, Lewis acids, electrophiles, nucleophiles, 1,3-dipolar reagents and reagents containing multiple bonds able to be inserted. Various related complexes have been obtained under these conditions, in which one of the azide insertion compounds reductively eliminates to give an allylic functionalization product …
Date: March 6, 2012
Creator: Ho, Hung-An
System: The UNT Digital Library