An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity (open access)

An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity

Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome?s predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy.
Date: September 23, 2010
Creator: Suen, Garret; Barry, Kerrie; Goodwin, Lynne; Scott, Jarrod; Aylward, Frank; Adams, Sandra et al.
Object Type: Article
System: The UNT Digital Library
BEAM CONTAINMENT SYSTEM FOR NSLS-II (open access)

BEAM CONTAINMENT SYSTEM FOR NSLS-II

The shielding design for the NSLS-II will provide adequate protection for the full injected beam loss in two periods of the ring around the injection point, but the remainder of the ring is shielded for lower losses of {le} 10% full beam. This will require a system to insure that beam losses don't exceed these levels for a period of time that could cause excessive radiation levels outside the shield walls. This beam containment system will measure, provide a level of control and alarm indication of the beam power losses along the beam path from the source (e-gun, linac) thru the injection system and the storage ring. This system will consist of collimators that will provide limits to (and potentially to measure) the beam miss-steering and control the loss points of the charge and monitors that will measure the average beam current losses along the beam path and alarm when this beam power loss exceeds the level set by the shielding specifications. This will require some new ideas in beam loss detection capability and collimation. The initial planning and R&D program will be presented.
Date: May 23, 2010
Creator: Kramer, S. L.; Casey, W. & Job, P. K.
Object Type: Article
System: The UNT Digital Library
OECD MCCI project Melt Eruption Test (MET) design report, Rev. 2. April 15, 2003. (open access)

OECD MCCI project Melt Eruption Test (MET) design report, Rev. 2. April 15, 2003.

The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. The Melt Coolability and Concrete Interaction (MCCI) program is pursuing separate effect tests to examine the viability of the melt coolability mechanisms identified as part of the MACE program. These mechanisms include bulk cooling, water ingression, volcanic eruptions, and crust breach. At the second PRG meeting held at ANL on 22-23 October 2002, a preliminary design1 for a separate effects test to investigate the melt eruption cooling mechanism was presented for PRG review. At this meeting, NUPEC made several recommendations on the experiment approach aimed at optimizing the chances of achieving a floating crust boundary condition in this test. The principal recommendation was to incorporate a mortar sidewall liner into the test design, since data from the COTELS experiment program indicates that corium does not …
Date: May 23, 2011
Creator: Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Aeschlimann, R. W. & Basu, S.
Object Type: Report
System: The UNT Digital Library
Novel Geometries for the LHC Crab Cavity (open access)

Novel Geometries for the LHC Crab Cavity

The planned luminosity upgrade to LHC is likely to necessitate a large crossing angle and a local crab crossing scheme. For this scheme crab cavities align bunches prior to collision. The scheme requires at least four such cavities, a pair on each beam line either side of the interaction point (IP). Upstream cavities initiate rotation and downstream cavities cancel rotation. Cancellation is usually done at a location where the optics has re-aligned the bunch. The beam line separation near the IP necessitates a more compact design than is possible with elliptical cavities such as those used at KEK. The reduction in size must be achieved without an increase in the operational frequency to maintain compatibility with the long bunch length of the LHC. This paper proposes a suitable superconducting variant of a four rod coaxial deflecting cavity (to be phased as a crab cavity), and presents analytical models and simulations of suitable designs.
Date: May 23, 2010
Creator: B. Hall, G. Burt, C. Lingwood, R. Rimmer, H. Wang
Object Type: Article
System: The UNT Digital Library
Liquid-Water Uptake and Removal in PEM Fuel-Cell Components (open access)

Liquid-Water Uptake and Removal in PEM Fuel-Cell Components

Management of liquid water is critical for optimal fuel-cell operation, especially at low temperatures. It is therefore important to understand the wetting properties and water holdup of the various fuel-cell layers. While the gas-diffusion layer is relatively hydrophobic and exhibits a strong intermediate wettability, the catalyst layer is predominantly hydrophilic. In addition, the water content of the ionomer in the catalyst layer is lower than that of the bulk membrane, and is affected by platinum surfaces. Liquid-water removal occurs through droplets on the surface of the gas-diffusion layer. In order to predict droplet instability and detachment, a force balance is used. While the pressure or drag force on the droplet can be derived, the adhesion or surface-tension force requires measurement using a sliding-angle approach. It is shown that droplets produced by forcing water through the gas-diffusion layer rather than placing them on top of it show much stronger adhesion forces owing to the contact to the subsurface water.
Date: September 23, 2011
Creator: Das, Prodip K.; Gunterman, Haluna P.; Kwong, Anthony & Weber, Adam Z.
Object Type: Article
System: The UNT Digital Library
OECD MCCI project enhancing instrumentation for reactor materials experiments, Rev. 0 September 3, 2002. (open access)

OECD MCCI project enhancing instrumentation for reactor materials experiments, Rev. 0 September 3, 2002.

Reactor safety experiments for studying the reactions of a molten core (corium) with water and/or concrete involve materials at extremely high temperature. Such high temperature severely restricts the types of sensors that can be employed to measure characteristics of the corium itself. Yet there is great interest in improving instrumentation so that the state of the melt can be established with more precision. In particular, it would be beneficial to increase both the upper range limit and accuracy of temperature measurements. The poor durability of thermocouples at high temperature is also an important issue. For experiments involving a water-quenched melt, direct measurements of the growth rate of the crust separating the melt and water would be of great interest. This is a key element in determining the nature of heat transfer between the melt and coolant. Despite its importance, no one has been able to directly measure the crust thickness during such tests. This paper considers three specialized sensors that could be introduced to enhance melt characterization: (1) A commercially fabricated, single point infrared temperature measurement with the footprint of a thermowell. A lens assembly and fiber optic cable linked to a receiver and amplifier measures the temperature at the …
Date: May 23, 2011
Creator: Lomperski, S. & Basu, S.
Object Type: Report
System: The UNT Digital Library
RHIC BBLR measurements in 2009 (open access)

RHIC BBLR measurements in 2009

Long range beam-beam experiments were conducted during the Run 2009 in the Yellow and the Blue beams of the RHIC accelerator with DC wires. The effects of a long-range interaction with a DC wire on colliding and non-colliding bunches with the aid of beam losses, orbits, tunes were studied. Results from distance scans and an attempt to compensate a long-range interaction with a DC wire is presented. Two DC wires in the vertical plane were installed in the RHIC accelerator in 2006 with the aim of investigating long range (LR) beam-beam effects and a potential compensation. Extensive experiments were conducted focusing mainly on the effect of a wire on single ion beams from 2006-2009. A unique opportunity to compare the effect of the wire on colliding beams and compensation of a single LR beam-beam interaction were conducted in Run2009 with protons at 100 GeV. Due to aperture considerations for decreasing {beta}*, the Blue wire was removed during the shutdown after the Run2009 and the Yellow wire is foreseen to be removed in the near future. Therefore, these experiments serve as the final set of measurements for LR beam-beam with RHIC as a test bed. The relevant RHIC beam and lattice …
Date: May 23, 2010
Creator: Calaga, R.; Robert-Demolaize, G. & Fischer, W.
Object Type: Article
System: The UNT Digital Library
LLNL-Generated Content for the California Academy of Sciences, Morrison Planetarium Full-Dome Show: Earthquake (open access)

LLNL-Generated Content for the California Academy of Sciences, Morrison Planetarium Full-Dome Show: Earthquake

The California Academy of Sciences (CAS) Morrison Planetarium is producing a 'full-dome' planetarium show on earthquakes and asked LLNL to produce content for the show. Specifically the show features numerical ground motion simulations of the M 7.9 1906 San Francisco and a possible future M 7.05 Hayward fault scenario earthquake. The show also features concepts of plate tectonics and mantle convection using images from LLNL's G3D global seismic tomography. This document describes the data that was provided to the CAS in support of production of the 'Earthquake' show. The CAS is located in Golden Gate Park, San Francisco and hosts over 1.6 million visitors. The Morrison Planetarium, within the CAS, is the largest all digital planetarium in the world. It features a 75-foot diameter spherical section projection screen tilted at a 30-degree angle. Six projectors cover the entire field of view and give a three-dimensional immersive experience. CAS shows strive to use scientifically accurate digital data in their productions. The show, entitled simply 'Earthquake', will debut on 26 May 2012. They are working on graphics and animations based on the same data sets for display on LLNL powerwalls and flat-screens as well as for public release.
Date: January 23, 2012
Creator: Rodgers, A J; Petersson, N A; Morency, C E; Simmons, N A & Sjogreen, B
Object Type: Report
System: The UNT Digital Library
Characterization of Fish Passage Conditions through a Francis Turbine and Regulating Outlet at Cougar Dam, Oregon, Using Sensor Fish, 2009–2010 (open access)

Characterization of Fish Passage Conditions through a Francis Turbine and Regulating Outlet at Cougar Dam, Oregon, Using Sensor Fish, 2009–2010

Fish passage conditions through a Francis turbine and a regulating outlet (RO) at Cougar Dam on the south fork of the McKenzie River in Oregon were evaluated by Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers, Portland District, using Sensor Fish devices. The objective of the study was to describe and compare passage exposure conditions, identifying potential fish injury regions encountered during passage via specific routes. The RO investigation was performed in December 2009 and the turbine evaluation in January 2010, concurrent with HI-Z balloon-tag studies by Normandeau Associates, Inc. Sensor Fish data were analyzed to estimate 1) exposure conditions, particularly exposure to severe collision, strike, and shear events by passage route sub-regions; 2) differences in passage conditions between passage routes; and 3) relationships to live-fish injury and mortality data estimates. Comparison of the three passage routes evaluated at Cougar Dam indicates that the RO passage route through the 3.7-ft gate opening was relatively the safest route for fish passage under the operating conditions tested; turbine passage was the most deleterious. These observations were supported also by the survival and malady estimates obtained from live-fish testing. Injury rates were highest for turbine passage. Compared to mainstem Columbia …
Date: May 23, 2011
Creator: Duncan, Joanne P.
Object Type: Report
System: The UNT Digital Library
Quantum efficiency temporal response and lifetime of a GaAs cathode in SRF electron gun (open access)

Quantum efficiency temporal response and lifetime of a GaAs cathode in SRF electron gun

RF electron guns with a strained super lattice GaAs cathode can generate polarized electron beam of higher brightness and lower emittance than do DC guns, due to their higher field gradient at the cathode's surface. In a normal conducting RF gun, the extremely high vaccum required by these cathodes can not be met. We report on an experiment with a superconducting SRF gun, which can maintain a vacuum of nearly 10-12 torr because of cryo-pumping at the temperature of 4.2K. With conventional activation, we obtained a QE of 3% at 532 nm, with lifetime of nearly 3 days in the preparation chamber. We plan to use this cathode in a 1.3 GHz 1/2 cell SRF gun to study its performance. In addition, we studied the multipacting at the location of cathode. A new model based on the Forkker-Planck equation which can estimate the bunch length of the electron beam is discussed in this paper. Future particle accelerators such as eRHIC and ILC require high brightness, high current polarized electrons Recently, using a superlattice crystal, the maximum polarization of 95% was reached. Activation with Cs,O lowers the electron affinity and makes it energetically possible for all the electrons excited in to …
Date: May 23, 2010
Creator: Wang, E.; Ben-Zvi, Ilan; Kewisch, J.; Burrill, A.; Rao, T.; Wu, Q. et al.
Object Type: Article
System: The UNT Digital Library
Uranium Enrichment Standards of the Y-12 Nuclear Detection and Sensor Testing Center (open access)

Uranium Enrichment Standards of the Y-12 Nuclear Detection and Sensor Testing Center

The Y-12 National Security Complex has recently fabricated and characterized a new series of metallic uranium standards for use in the Nuclear Detection and Sensor Testing Center (NDSTC). Ten uranium metal disks with enrichments varying from 0.2 to 93.2% {sup 235}U were designed to provide researchers access to a wide variety of measurement scenarios in a single testing venue. Special care was taken in the selection of the enrichments in order to closely bracket the definitions of reactor fuel at 4% {sup 235}U and that of highly enriched uranium (HEU) at 20% {sup 235}U. Each standard is well characterized using analytical chemistry as well as a series of gamma-ray spectrometry measurements. Gamma-ray spectra of these standards are being archived in a reference library for use by customers of the NDSTC. A software database tool has been created that allows for easier access and comparison of various spectra. Information provided through the database includes: raw count data (including background spectra), regions of interest (ROIs), and full width half maximum calculations. Input is being sought from the user community on future needs including enhancements to the spectral database and additional Uranium standards, shielding configurations and detector types. A related presentation are planned …
Date: May 23, 2012
Creator: Cantrell, J.
Object Type: Article
System: The UNT Digital Library
Transportation Research and Analysis Computing Center (TRACC) Year 5 Quarter 4 Progress Report. (open access)

Transportation Research and Analysis Computing Center (TRACC) Year 5 Quarter 4 Progress Report.

None
Date: January 23, 2012
Creator: Ley, H. (Energy Systems)
Object Type: Report
System: The UNT Digital Library
Operational Experience with the Frontier System in CMS (open access)

Operational Experience with the Frontier System in CMS

None
Date: July 23, 2012
Creator: Blumenfeld, Barry; Dykstra, Dave; Kreuzer, Peter; Du, Ran & Wang, Weizhen
Object Type: Article
System: The UNT Digital Library
A survey on wind power ramp forecasting. (open access)

A survey on wind power ramp forecasting.

The increasing use of wind power as a source of electricity poses new challenges with regard to both power production and load balance in the electricity grid. This new source of energy is volatile and highly variable. The only way to integrate such power into the grid is to develop reliable and accurate wind power forecasting systems. Electricity generated from wind power can be highly variable at several different timescales: sub-hourly, hourly, daily, and seasonally. Wind energy, like other electricity sources, must be scheduled. Although wind power forecasting methods are used, the ability to predict wind plant output remains relatively low for short-term operation. Because instantaneous electrical generation and consumption must remain in balance to maintain grid stability, wind power's variability can present substantial challenges when large amounts of wind power are incorporated into a grid system. A critical issue is ramp events, which are sudden and large changes (increases or decreases) in wind power. This report presents an overview of current ramp definitions and state-of-the-art approaches in ramp event forecasting.
Date: February 23, 2011
Creator: Ferreira, C.; Gama, J.; Matias, L.; Botterud, A.; Wang, J. (Decision and Information Sciences) & Porto), (INESC
Object Type: Report
System: The UNT Digital Library
Whitestone Poncelet RISEC Project Final Technical Report (open access)

Whitestone Poncelet RISEC Project Final Technical Report

This report covers the development of the Poncelet Kinetics RHK100 Prototype. The work was completed by Hasz Consulting, LLC; CE2 Engineers, LLC; Energetic Drives, LLC; and Applied Power and Control all operating as subcontractors to Whitestone Power and Communications during the year from October 1, 2010 to September 23, 2011. As designed, the prototype is run-of-river instream energy conversion (RISEC) system. The design is principally a three-stage undershot water wheel arranged according to the method of General Poncelet. The power train consists of an epicyclic transmission coupled to a permanent magnet generator. The electronic controls system governs the speed of the wheel and rectifies the power signal to enable the system to be integrated with infinite grid infrastructures, to operate in parallel in finite grid applications with other small power productions sources or to operate in stand-alone mode on demand.
Date: September 23, 2011
Creator: Hasz Consulting, LLC; Communications, Whitestone Power and & Engineers, CE2
Object Type: Report
System: The UNT Digital Library
Lithium Wall Conditioning And Surface Dust Detection On NSTX (open access)

Lithium Wall Conditioning And Surface Dust Detection On NSTX

Lithium evaporation onto NSTX plasma facing components (PFC) has resulted in improved energy confinement, and reductions in the number and amplitude of edge-localized modes (ELMs) up to the point of complete ELM suppression. The associated PFC surface chemistry has been investigated with a novel plasma material interface probe connected to an in-vacuo surface analysis station. Analysis has demonstrated that binding of D atoms to the polycrystalline graphite material of the PFCs is fundamentally changed by lithium - in particular deuterium atoms become weakly bonded near lithium atoms themselves bound to either oxygen or the carbon from the underlying material. Surface dust inside NSTX has been detected in real-time using a highly sensitive electrostatic dust detector. In a separate experiment, electrostatic removal of dust via three concentric spiral-shaped electrodes covered by a dielectric and driven by a high voltage 3-phase waveform was evaluated for potential application to fusion reactors
Date: May 23, 2011
Creator: Skinner, C. H.; Bell, M. G.; Friesen, F. Q. L.; Heim, B.; Jaworski, M. A.; Kugel, H. et al.
Object Type: Article
System: The UNT Digital Library
Deciphering the details of RNA aminoglycoside interactions: from atomistic models to biotechnological applications (open access)

Deciphering the details of RNA aminoglycoside interactions: from atomistic models to biotechnological applications

A detailed study was done of the neomycin-B RNA aptamer for determining its selectivity and binding ability to both neomycin– and kanamycin-class aminoglycosides. A novel method to increase drug concentrations in cells for more efficiently killing is described. To test the method, a bacterial model system was adopted and several small RNA molecules interacting with aminoglycosides were cloned downstream of T7 RNA polymerase promoter in an expression vector. Then, the growth analysis of E. coli expressing aptamers was observed for 12-hour period. Our analysis indicated that aptamers helped to increase the intracellular concentration of aminoglycosides thereby increasing their efficacy.
Date: July 23, 2012
Creator: Ilgu, Muslum
Object Type: Thesis or Dissertation
System: The UNT Digital Library
YT: A Multi-Code Analysis Toolkit for Astrophysical Simulation Data (open access)

YT: A Multi-Code Analysis Toolkit for Astrophysical Simulation Data

The analysis of complex multiphysics astrophysical simulations presents a unique and rapidly growing set of challenges: reproducibility, parallelization, and vast increases in data size and complexity chief among them. In order to meet these challenges, and in order to open up new avenues for collaboration between users of multiple simulation platforms, we present yt (available at http://yt.enzotools.org/) an open source, community-developed astrophysical analysis and visualization toolkit. Analysis and visualization with yt are oriented around physically relevant quantities rather than quantities native to astrophysical simulation codes. While originally designed for handling Enzo's structure adaptive mesh refinement data, yt has been extended to work with several different simulation methods and simulation codes including Orion, RAMSES, and FLASH. We report on its methods for reading, handling, and visualizing data, including projections, multivariate volume rendering, multi-dimensional histograms, halo finding, light cone generation, and topologically connected isocontour identification. Furthermore, we discuss the underlying algorithms yt uses for processing and visualizing data, and its mechanisms for parallelization of analysis tasks.
Date: June 23, 2011
Creator: Turk, Matthew J.; /San Diego, CASS; Smith, Britton D.; U., /Michigan State; Oishi, Jeffrey S.; /KIPAC, Menlo Park /Stanford U., Phys. Dept. et al.
Object Type: Article
System: The UNT Digital Library
Ekpyrosis and inflationary dynamics in heavy ion collisions: the role of quantum fluctuations (open access)

Ekpyrosis and inflationary dynamics in heavy ion collisions: the role of quantum fluctuations

We summarize recent significant progress in the development of a first-principles formalism to describe the formation and evolution of matter in very high energy heavy ion collisions. The key role of quantum fluctuations both before and after a collision is emphasized. Systematic computations are now feasible to address early time isotropization, flow, parton energy loss and the Chiral Magnetic Effect.
Date: May 23, 2011
Creator: Dusling, K.; Venugopalan, R. & Gelis, F.
Object Type: Article
System: The UNT Digital Library
PCP METHODOLOGY FOR DETERMINING DOSE RATES FOR SMALL GRAM QUANTITIES IN SHIPPING PACKAGINGS (open access)

PCP METHODOLOGY FOR DETERMINING DOSE RATES FOR SMALL GRAM QUANTITIES IN SHIPPING PACKAGINGS

The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials, are significantly less hazardous than large amounts of the same materials. This study describes a methodology designed to estimate an SGQ for several neutron and gamma emitting isotopes that can be shipped in a package compliant with 10 CFR Part 71 external radiation level limits regulations. These regulations require packaging for the shipment of radioactive materials perform, under both normal and accident conditions, the essential functions of material containment, subcriticality, and maintain external radiation levels within regulatory limits. 10 CFR 71.33(b)(1)(2)&(3) state radioactive and fissile materials must be identified and their maximum quantity, chemical and physical forms be included in an application. Furthermore, the U.S. Federal Regulations require application contain an evaluation demonstrating the package (i.e., the packaging and its contents) satisfies the external radiation standards for all packages (10 CFR 71.31(2), 71.35(a), & 71.47). By placing the contents in a He leak-tight containment vessel, and limiting the mass to ensure subcriticality, the first two essential functions are readily met. Some isotopes emit sufficiently strong photon radiation that small amounts of material can yield a large external dose …
Date: August 23, 2011
Creator: Nathan, S.
Object Type: Report
System: The UNT Digital Library
LHC crab-cavity aspects and strategy (open access)

LHC crab-cavity aspects and strategy

The 3rd LHC Crab Cavity workshop (LHC-CC09) took place at CERN in October 2009. It reviewed the current status and identified a clear strategy towards a future crab-cavity implementation. Following the success of crab cavities in KEK-B and the strong potential for luminosity gain and leveling, CERN will pursue crab crossing for the LHC upgrade. We present a summary and outcome of the variousworkshop sessions which have led to the LHC crab-cavity strategy, covering topics like layout, cavity design, integration, machine protection, and a potential validation test in the SPS.
Date: May 23, 2010
Creator: Calaga, R.; Tomas, R. & Zimmermann, F.
Object Type: Article
System: The UNT Digital Library
Experimental Study of Parametric Dependence of Electron-scale Turbulence in a Spherical Tokamak (open access)

Experimental Study of Parametric Dependence of Electron-scale Turbulence in a Spherical Tokamak

Electron-scale turbulence is predicted to drive anomalous electron thermal transport. However, experimental study of its relation with transport is still in its early stage. On the National Spherical Tokamak eXperiment (NSTX), electron-scale density fluctuations are studied with a novel tangen- tial microwave scattering system with high radial resolution of ±2 cm. Here, we report a study of parametric dependence of electron-scale turbulence in NSTX H-mode plasmas. The dependence on density gradient is studied through the observation of a large density gradient variation in the core induced by an ELM event, where we found the first clear experimental evidence of density gradient stabilization of electron-gyro scale turbulence in a fusion plasma. This observation, cou- pled with linear gyro-kinetic calculations, leads to the identification of the observed instability as toroidal Electron Temperature Gradient (ETG) modes. It is observed that longer wavelength ETG modes, k⊥ρs < 10 (ρs is the ion gyroradius at electron temperature and k⊥ is the wavenumber perpendicular to local equilibrium magnetic field), are most stabilized by density gradient, and the stabilization is accompanied by about a factor of two decrease in electron thermal diffusivity. Comparisons with nonlinear ETG gyrokinetic simulations shows ETG turbulence may be able to explain the …
Date: May 23, 2012
Creator: Ren, Y.; Kaye, S. M.; Mazzucato, E.; Bell, R. E.; Diallo, A.; Domier, C. W. et al.
Object Type: Report
System: The UNT Digital Library
TANK 26F SUPERNATANT AND 2F EVAPORATOR EDUCTOR PUMP SAMPLE CHARACTERIZATION RESULTS (open access)

TANK 26F SUPERNATANT AND 2F EVAPORATOR EDUCTOR PUMP SAMPLE CHARACTERIZATION RESULTS

In an effort to understand the reasons for system plugging problems in the SRS 2F evaporator, supernatant samples were retrieved from the evaporator feed tank (Tank 26F) and solids were collected from the evaporator eductor feed pump for characterization. The variable depth supernatant samples were retrieved from Tank 26F in early December of 2010 and samples were provided to SRNL and the F/H Area laboratories for analysis. Inspection and analysis of the samples at SRNL was initiated in early March of 2011. During the interim period, samples were frequently exposed to temperatures as low as 12 C with daily temperature fluctuations as high as 10 C. The temperature at the time of sample collection from the waste tank was 51 C. Upon opening the supernatant bottles at SRNL, many brown solids were observed in both of the Tank 26F supernatant samples. In contrast, no solids were observed in the supernatant samples sent to the F/H Area laboratories, where the analysis was completed within a few days after receipt. Based on these results, it is believed that the original Tank 26F supernatant samples did not contain solids, but solids formed during the interim period while samples were stored at ambient temperature …
Date: August 23, 2011
Creator: King, W.; Hay, M. & Coleman, C.
Object Type: Report
System: The UNT Digital Library
Offshore Wind Turbines - Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine: Environmental Effects of Offshore Wind Energy Development (open access)

Offshore Wind Turbines - Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine: Environmental Effects of Offshore Wind Energy Development

Deep C Wind, a consortium headed by the University of Maine will test the first U.S. offshore wind platforms in 2012. In advance of final siting and permitting of the test turbines off Monhegan Island, residents of the island off Maine require reassurance that the noise levels from the test turbines will not disturb them. Pacific Northwest National Laboratory, at the request of the University of Maine, and with the support of the U.S. Department of Energy Wind Program, modeled the acoustic output of the planned test turbines.
Date: November 23, 2010
Creator: Aker, Pamela M.; Jones, Anthony M. & Copping, Andrea E.
Object Type: Report
System: The UNT Digital Library