Surface species formed by the adsorption and dissociation of water molecules on Ru(0001) surface containing a small coverage of carbon atoms studied by scanning tunneling microscopy (open access)

Surface species formed by the adsorption and dissociation of water molecules on Ru(0001) surface containing a small coverage of carbon atoms studied by scanning tunneling microscopy

The adsorption and dissociation of water on a Ru(0001) surface containing a small amount ({le} 3 %) of carbon impurities was studied by scanning tunneling microscopy (STM). Various surface species are formed depending on the temperature. These include molecular H{sub 2}O, H{sub 2}O-C complexes, H, O, OH and CH. Clusters of either pure H{sub 2}O or mixed H{sub 2}O-OH species are also formed. Each of these species produces a characteristic contrast in the STM images and can be identified by experiment and by ab initio total energy calculations coupled with STM image simulations. Manipulation of individual species via excitation of vibrational modes with the tunneling electrons has been used as supporting evidence.
Date: April 26, 2008
Creator: UCB, Dept of Materials Science and Engineering
Object Type: Article
System: The UNT Digital Library
TESTING OF A ROTARY MICROFILTER TO SUPPORT HANFORD APPLICATIONS (open access)

TESTING OF A ROTARY MICROFILTER TO SUPPORT HANFORD APPLICATIONS

Savannah River National Laboratory (SRNL) researchers are investigating and developing a rotary microfilter for solid-liquid separation applications at the Savannah River Site (SRS). Because of the success of that work, the Hanford Site is evaluating the use of the rotary microfilter for its Supplemental Pretreatment process. The authors performed rotary filter testing with a full-scale, 25-disk unit with 0.5 {micro} filter media manufactured by Pall Corporation using a Hanford AN-105 simulant at solids loadings of 0.06, 0.29, and 1.29 wt%. The conclusions from this testing are: (1) The filter flux at 0.06 wt% solids reached a near constant value at an average of 0.26 gpm/ft{sup 2} (6.25 gpm total). (2) The filter flux at 0.29 wt% solids reached a near constant value at an average of 0.17 gpm/ft{sup 2} (4 gpm total). (3) The filter flux at 1.29 wt% solids reached a near constant value at an average of 0.10 gpm/ft{sup 2} (2.4 gpm total). (4) Because of differences in solids loadings, a direct comparison between crossflow filter flux and rotary filter flux is not possible. The data show the rotary filter produces a higher flux than the crossflow filter, but the improvement is not as large as seen in …
Date: June 26, 2008
Creator: Poirier, M; David Herman, D; David Stefanko, D & Samuel Fink, S
Object Type: Report
System: The UNT Digital Library
Nanostructured Assemblies of Thermoelectric Composite Materials (open access)

Nanostructured Assemblies of Thermoelectric Composite Materials

At the end of the funding period (March 2003) for our program in ferroelectric oxide nanomaterials, we had 3 publications in print, one more had been submitted and two more were in preparation in peer-reviewed journals and invited symposia lectures had been given since starting the project in the Fall of 1999. We hired two postdoctoral fellows, Dr. Ki-Seog Chang and Dr. Wenzhong Wang. We have also trained two graduate students, Ms. Keri Williams and Ms. Bernadette Hernandez, and one undergraduate student (Mr. Michael Scancella).
Date: February 26, 2008
Creator: Dorhout, Peter K. & Fisher, Ellen R.
Object Type: Report
System: The UNT Digital Library
Progress with Electron Beam System for the Tevatron Electron Lenses (open access)

Progress with Electron Beam System for the Tevatron Electron Lenses

None
Date: June 26, 2008
Creator: Kamerdzhiev, Vsevolod; Kuznetsov, G. F.; Saewert, G. W. & Shiltsev, V. D.
Object Type: Article
System: The UNT Digital Library
Simulation of Wakefield Effect in ILC IR Chamber (open access)

Simulation of Wakefield Effect in ILC IR Chamber

To achieve super high luminosity, high current beams with very short bunch length are needed, which carry high intensity EM fields. For ILC, two bunch trains with bunch length of 300 {micro}m and bunch charge of 3.2nC are needed to collide at the IR to achieve the ILC luminosity goals. When the 300 {micro}m bunches pass through the IR chamber, wakefields will be excited, which will cause HOM power flowing through the IR chamber beam pipe to the final doublets due to the high frequency characteristic of the induced wakefields. Since superconducting technology is adopted for the final doublets of ILC BDS, whose operation stability might be affected by the HOM power produced at the IR chamber, quench might happen. In this paper, we did some analytical estimation and numerical simulation on the wakefield effects in ILC IR chamber.
Date: June 26, 2008
Creator: Pei, S; Seryi, A. & Raubenheimer, T.O.
Object Type: Article
System: The UNT Digital Library
High-Efficiency Solar Cells for Large-Scale Electricity Generation (open access)

High-Efficiency Solar Cells for Large-Scale Electricity Generation

One strategy for helping the solar industry to grow faster is to use very high efficiency cells under concentrating optics. By using lenses or mirrors to concentrate the light, very small solar cells can be used, reducing the amount of semiconductor material and allowing use of higher efficiency cells, which are now >40% efficient.
Date: September 26, 2008
Creator: Kurtz, S.; Olson, J.; Geisz, J.; Friedman, D.; McMahon, W.; Ptak, A. et al.
Object Type: Article
System: The UNT Digital Library
EUV mask reflectivity measurements with micron-scale spatial resolution (open access)

EUV mask reflectivity measurements with micron-scale spatial resolution

The effort to produce defect-free mask blanks for EUV lithography relies on increasing the detection sensitivity of advanced mask inspection tools, operating at several wavelengths. We describe the unique measurement capabilities of a prototype actinic (EUV wavelength) microscope that is capable of detecting small defects and reflectivity changes that occur on the scale of microns to nanometers. Types of defects: (a) Buried Substrate Defects: particles & pits (causes amplitude and/or phase variations); (b) Surface Contamination (reduces reflectivity and (possibly) contrast); (c) Damage from Inspection and Use (reduces the reflectivity of the multilayer coating). This paper presents an overview of several topics where scanning actinic inspection makes a unique contribution to EUVL research. We describe the role of actinic scanning inspection in four cases: defect repair studies; observations of laser damage; after scanning electron microscopy; and native and programmed defects.
Date: May 26, 2008
Creator: Goldberg, Kenneth A.; Rekawa, S. B.; Kemp, C. D.; Barty, A.; Anderson, E. H.; Kearney, Patrick et al.
Object Type: Article
System: The UNT Digital Library
AMMONIA CONCENTRATION IN SALTSTONE HEADSPACE SUMMARY REPORT (open access)

AMMONIA CONCENTRATION IN SALTSTONE HEADSPACE SUMMARY REPORT

The Saltstone Facility Documented Safety Analysis (DSA) is under revision to accommodate changes in the Composite Lower Flammability Limit (CLFL) from the introduction of Isopar into Tank 50. Saltstone samples were prepared with an 'MCU' type salt solution spiked with ammonia. The ammonia released from the saltstone was captured and analyzed. The ammonia concentration found in the headspace of samples maintained at 95 C and 1 atm was, to 95% confidence, less than or equal to 3.9 mg/L. Tank 50 is fed by several influent streams. The salt solution from Tank 50 is pumped to the salt feed tank (SFT) in the Saltstone Production Facility (SPF). The premix materials cement, slag and fly ash are blended together prior to transfer to the grout mixer. The premix is fed to the grout mixer in the SPF and the salt solution is incorporated into the premix in the grout mixer, yielding saltstone slurry. The saltstone slurry drops into a hopper and then is pumped to the vault. The Saltstone Facility Documented Safety Analysis (DSA) is under revision to accommodate changes in the Composite Lower Flammability Limit (CLFL) from the introduction of Isopar{reg_sign} L into Tank 50. Waste Solidification-Engineering requested that the Savannah …
Date: September 26, 2008
Creator: Zamecnik, J & Alex Cozzi, A
Object Type: Report
System: The UNT Digital Library
Beam Collimation Studies for the ILC Positron Source (open access)

Beam Collimation Studies for the ILC Positron Source

Results of the collimation studies for the ILC positron source beam line are presented. The calculations of primary positron beam loss are done using the ELEGANT code. The secondary positron and electron beam loss, the synchrotron radiation along the beam line and the bremsstrahlung radiation in the collimators are simulated using the STRUCT code. The first part of the collimation system, located right after the positron source target (0.125 GeV), is used for protection of the RF Linac sections from heating and radiation. The second part of the system is used for final collimation before the beam injection into the Damping Ring at 5 GeV. The calculated power loss in the collimation region is within 100 W/m, with the loss in the collimators of 0.2-5 kW. The beam transfer efficiency from the target to the Damping Ring is 13.5%.
Date: June 26, 2008
Creator: Drozhdin, A.; Nosochkov, Y. & Zhou, F.
Object Type: Article
System: The UNT Digital Library
Measurement of the Hadronic Mass Spectrum in B to Xulnu Decaysand Determination of the b-Quark Mass at the BaBar Experiment (open access)

Measurement of the Hadronic Mass Spectrum in B to Xulnu Decaysand Determination of the b-Quark Mass at the BaBar Experiment

I present preliminary results of the measurement of the hadronic mass spectrum and its first three spectral moments in inclusive charmless semileptonic B-meson decays. The truncated hadronic mass moments are used for the first determination of the b-quark mass and the nonperturbative parameters {mu}{sub {pi}}{sup 2} and {rho}{sub D}{sup 3} in this B-meson decay channel. The study is based on 383 x 10{sup 6} B{bar B} decays collected with the BABAR experiment at the PEP-II e{sup +}e{sup -} storage rings, located at the Stanford Linear Accelerator Center. The first, second central, and third central hadronic mass moment with a cut on the hadronic mass m{sub X}{sup 2} < 6.4GeV{sup 2} and the lepton momentum p* > 1 GeV are measured to be: M{sub 1} = (1.96 {+-} 0.34{sub stat} {+-} 0.53{sub syst}) GeV{sup 2}; U{sub 2} = (1.92 {+-} 0.59{sub stat} {+-} 0.87{sub syst}) GeV{sup 4}; and U{sub 3} = (1.79 {+-} 0.62{sub stat} {+-} 0.78{sub syst}) GeV{sup 6}; with correlation coefficients {rho}{sub 12} = 0.99, {rho}{sub 23} = 0.94, and {rho}{sub 13} = 0.88, respectively. Using Heavy Quark Effective Theory-based predictions in the kinetic scheme we extract: m{sub b} = (4.60 {+-} 0.13{sub stat} {+-} 0.19{sub syst} {+-} 0.10{sub …
Date: June 26, 2008
Creator: Tackmann, Kerstin & /UC, Berkeley /SLAC
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Acclerator R&D for a Linear Collider (open access)

Acclerator R&D for a Linear Collider

The goal of this project was to perform simulations of beam transport in linear colliders, with an emphasis on emittance dilution, spin polarization transport, and development and testing of beam based tuning algorithms. Our simulations are based on an existing object-oriented particle-tracking library, Bmad. To facilitate the efficient development of simulations, an accelerator design and analysis program based on Bmad has been developed called Tao (Tool for Accelerator Optics). The three beam-based alignment algorithms, Dispersion Free Steering, Ballistic Alignment (BA), and the Kubo Method have been implemented in Tao. We have studied the effects of magnet misalignments, BPM resolution, beam jitter, stray fields, BPM and steering magnet failure and the effects of various cavity shape wakefields. A parametric study has been conducted in the presence of the above types of errors for all three alignment algorithms. We find that BPM resolution has only modest impact on the effectiveness of beam based alignment. The DFS correction algorithm was found to be very robust in situations where there were BPM and/or steering magnet failures. The wakefields in the main linac are very weak and cause negligible emittance growth. Spin tracking was extended to study all accelerator components between the damping ring and …
Date: November 26, 2008
Creator: Rubin, D.L.; Dugan, G.; Gibbons, L.; Palmer, M.; Patterson, R.; Sagan, D. et al.
Object Type: Report
System: The UNT Digital Library
Physics Design Requirements for the National Spherical Torus Experiment Liquid Lithium Divertor (open access)

Physics Design Requirements for the National Spherical Torus Experiment Liquid Lithium Divertor

Recent NSTX high power divertor experiments have shown significant and recurring benefits of solid lithium coatings on PFC's to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. The next step in this work is installation of a liquid lithium divertor (LLD) to achieve density control for inductionless current drive capability (e.g., about a 15-25% ne decrease from present highest non-inductionless fraction discharges which often evolve toward the density limit, ne/nGW~1), to enable ne scan capability (x2) in the H-mode, to test the ability to operate at significantly lower density for future ST-CTF reactor designs (e.g., ne/nGW = 0.25), and eventually to investigate high heat-flux power handling (10 MW/m2) with longpulse discharges (>1.5s). The first step (LLD-1) physics design encompasses the desired plasma requirements, the experimental capabilities and conditions, power handling, radial location, pumping capability, operating temperature, lithium filling, MHD forces, and diagnostics for control and characterization.
Date: September 26, 2008
Creator: Kugel, W.; Bell, M.; Berzak,L.; Brooks, A.; Ellis, R.; Gerhardt, S. et al.
Object Type: Article
System: The UNT Digital Library
Evaluating EUV mask pattern imaging with two EUV microscopes (open access)

Evaluating EUV mask pattern imaging with two EUV microscopes

Aerial image measurement plays a key role in the development of patterned reticles for each generation of lithography. Studying the field transmitted (reflected) from EUV masks provides detailed information about potential disruptions caused by mask defects, and the performance of defect repair strategies, without the complications of photoresist imaging. Furthermore, by measuring the continuously varying intensity distribution instead of a thresholded, binary resist image, aerial image measurement can be used as feedback to improve mask and lithography system modeling methods. Interest in EUV, at-wavelength, aerial image measurement lead to the creation of several research tools worldwide. These tools are used in advanced mask development work, and in the evaluation of the need for commercial at-wavelength inspection tools. They describe performance measurements of two such tools, inspecting the same EUV mask in a series of benchmarking tests that includes brightfield and darkfield patterns. One tool is the SEMATECH Berkeley Actinic Inspection Tool (AIT) operating on a bending magnet beamline at Lawrence Berkeley National Laboratory's Advanced Light Source. The AIT features an EUV Fresnel zoneplate microscope that emulates the numerical aperture of a 0.25-NA stepper, and projects the aerial image directly onto a CCD camera, with 700x magnification. The second tool is …
Date: February 26, 2008
Creator: Goldberg, Kenneth A.; Takase, Kei; Naulleau, Patrick P.; Han, Hakseung; Barty, Anton; Kinoshita, Hiroo et al.
Object Type: Article
System: The UNT Digital Library
Visualization of Excitonic Structure in the Fenna-Matthews-OlsonPhotosynthetic Complex by Polarization-Dependent Two-DimensionalElectronic Spectroscopy (open access)

Visualization of Excitonic Structure in the Fenna-Matthews-OlsonPhotosynthetic Complex by Polarization-Dependent Two-DimensionalElectronic Spectroscopy

Photosynthetic light-harvesting proceeds by the collection and highly efficient transfer of energy through a network of pigment-protein complexes. Inter-chromophore electronic couplings and interactions between pigments and the surrounding protein determine energy levels of excitonic states and dictate the mechanism of energy flow. The excitonic structure (orientation of excitonic transition dipoles) of pigment-protein complexes is generally deduced indirectly from x-ray crystallography in combination with predictions of transition energies and couplings in the chromophore site basis. Here, we demonstrate that coarse-grained excitonic structural information in the form of projection angles between transition dipole moments can be obtained from polarization-dependent two-dimensional electronic spectroscopy of an isotropic sample, particularly when the nonrephasing or free polarization decay signal rather than the photon echo signal is considered. The method provides an experimental link between atomic and electronic structure and accesses dynamical information with femtosecond time resolution. In an investigation of the Fenna-Matthews-Olson complex from green sulfur bacteria, energy transfer connecting two particular exciton states in the protein is isolated as being the primary contributor to a cross peak in the nonrephasing 2D spectrum at 400 fs under a specific sequence of polarized excitation pulses. The results suggest the possibility of designing experiments using combinations of tailored …
Date: May 26, 2008
Creator: Department of Chemistry, The University of Chicago; Department of Biology, Department of Chemistry, Washington University; Fleming, Graham; Read, Elizabeth L.; Schlau-Cohen, Gabriela S.; Engel, Gregory S. et al.
Object Type: Article
System: The UNT Digital Library
UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL MANAGEMENT INTERNATIONAL PROGRAM ANNUAL REPORT FOR 2007 (open access)

UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL MANAGEMENT INTERNATIONAL PROGRAM ANNUAL REPORT FOR 2007

The DOE-EM Office of Engineering and Technology is responsible for implementing EM's international cooperative program. The Office of Engineering and Technology's international efforts are aimed at supporting EM's mission of risk reduction and accelerated cleanup of the environmental legacy of the nation's nuclear weapons program and government-sponsored nuclear energy research. To do this, EM pursues collaborations with government organizations, educational institutions, and private industry to identify and develop technologies that can address the site cleanup needs of DOE. The Office of Engineering and Technology has developed a Technology Roadmap and a Multi-year Program Plan to identify technology needs and identify areas for focused research and development to support DOE-EM's environmental cleanup and waste management objectives. The international cooperative program is an important element of the technology development roadmap, leveraging of world-wide expertise in the advancement and deployment of remediation and treatment technologies. Introductory briefings aimed at furthering familiarity with the DOE-EM mission, and the vital role that technology development plays within it, were presented at two international meetings. The Office of Engineering and Technology currently works with the Khlopin Radium Institute (KRI) and SIA Radon Institute in Russia, the International Radioecology Laboratory (IRL) in Ukraine and the Nuclear Engineering and …
Date: August 26, 2008
Creator: Marra, J
Object Type: Report
System: The UNT Digital Library
Image Resolution in Scanning Transmission Electron Microscopy (open access)

Image Resolution in Scanning Transmission Electron Microscopy

Digital images captured with electron microscopes are corrupted by two fundamental effects: shot noise resulting from electron counting statistics and blur resulting from the nonzero width of the focused electron beam. The generic problem of computationally undoing these effects is called image reconstruction and for decades has proved to be one of the most challenging and important problems in imaging science. This proposal concerned the application of the Pixon method, the highest-performance image-reconstruction algorithm yet devised, to the enhancement of images obtained from the highest-resolution electron microscopes in the world, now in operation at Oak Ridge National Laboratory.
Date: June 26, 2008
Creator: Pennycook, S. J. & Lupini, A.R.
Object Type: Report
System: The UNT Digital Library
Observation of e^+e^- to \rho^+\rho^- near \sqrt{s}=10.58\gev (open access)

Observation of e^+e^- to \rho^+\rho^- near \sqrt{s}=10.58\gev

The authors report the first observation of e{sup +}e{sup -} {yields} {rho}{sup +}{rho}{sup -}, in a data sample of 379 fb{sup -1} collected with the BABAR detector at the PEP-II e{sup +}e{sup -} storage ring at center-of-mass energies near {radical}s = 10.58 GeV. The authors measure a cross section of {sigma}(e{sup +}e{sup -} {yields} {rho}{sup +}{rho}{sup -}) = 19.5 {+-} 1.6(stat) {+-} 3.2(syst) fb. Assuming production through single-photon annihilation, there are three independent helicity amplitudes. They measure the ratios of their squared moduli to be |F{sub 00}|{sup 2} : |F{sub 10}|{sup 2} : |F{sub 11}|{sup 2} = 0.51 {+-} 0.14(stat) {+-} 0.07(syst) : 0.10 {+-} 0.04(stat) {+-} 0.01(syst) : 0.04 {+-} 0.03(stat) {+-} 0.01(syst). The |F{sub 00}|{sup 2} result is inconsistent with the prediction of 1.0 made by QCD models with a significance of 3.1 standard deviations including systematic uncertainties.
Date: June 26, 2008
Creator: Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E. et al.
Object Type: Article
System: The UNT Digital Library
Determination of the Evaporation Coefficient of D2O (open access)

Determination of the Evaporation Coefficient of D2O

The evaporation rate of D{sub 2}O has been determined by Raman thermometry of a droplet train (12-15 {micro}m diameter) injected into vacuum ({approx}10{sup -5} torr). The cooling rate measured as a function of time in vacuum was fit to a model that accounts for temperature gradients between the surface and the core of the droplets, yielding an evaporation coefficient ({gamma}{sub e}) of 0.57 {+-} 0.06. This is nearly identical to that found for H{sub 2}O (0.62 {+-} 0.09) using the same experimental method and model, and indicates the existence of a kinetic barrier to evaporation. The application of a recently developed transition state theory (TST) model suggests that the kinetic barrier is due to librational and hindered translational motions at the liquid surface, and that the lack of an isotope effect is due to competing energetic and entropic factors. The implications of these results for cloud and aerosol particles in the atmosphere are discussed.
Date: March 26, 2008
Creator: Drisdell, Walter S.; Cappa, Christopher D.; Smith, Jared D.; Saykally, Richard J. & Cohen, Ronald C.
Object Type: Article
System: The UNT Digital Library
Thermal-Structural Analysis of the MacArthur Maze Freeway Collapse (open access)

Thermal-Structural Analysis of the MacArthur Maze Freeway Collapse

At approximately 3:41 AM on the morning of April 29, 2007, a tractor-trailer rig carrying 8,600 gallons (32.6 m{sup 3}) of fuel overturned on Interstate 880 in Oakland, CA. The resultant fire weakened the surrounding steel superstructure and caused a 50-yard (45.7 m) long section of the above connecting ramp from Interstate 80 to Interstate 580 to fail in approximately 18 minutes. In this study, we performed a loosely-coupled thermal-structural finite element analysis of the freeway using the LLNL Engineering codes NIKE3D, DYNA3D and TOPAZ3D. First, we applied an implicit structural code to statically initialize the stresses and displacements in the roadway at ambient conditions due to gravity loading. Next, we performed a thermal analysis by approximating the tanker fire as a moving box region of uniform temperature. This approach allowed for feasible calculation of the fire-to-structure radiative view factors and convective heat transport. We used a mass scaling methodology in the thermal analysis to reduce the overall simulation time so an explicit structural analysis could be used, which provided a more computationally efficient simulation of structural failure. Our approach showed structural failure of both spans due to thermal softening under gravity loading at approximately 20 minutes for a fixed …
Date: February 26, 2008
Creator: Noble, C. R.; Wemhoff, A. P. & McMichael, L. D.
Object Type: Article
System: The UNT Digital Library
Calibration of the HB line active well neutron coincidence counter for measurement of LANL 3013 highly enriched uranium product splits (open access)

Calibration of the HB line active well neutron coincidence counter for measurement of LANL 3013 highly enriched uranium product splits

None
Date: March 26, 2008
Creator: Dewberry, R.; Williams, D. R.; Lee, R. S.; Roberts, D. W.; Arrigo, L. M. & Salaymeh, S. R.
Object Type: Article
System: The UNT Digital Library
CSCAPES Institute (open access)

CSCAPES Institute

We report on the progress made by researchers of the CSCAPES Institute at Old Dominion University for the years 2007 and 2008 in the areas of research, software creation, education and training, and outreach activities.
Date: October 26, 2008
Creator: Pothen, Alex
Object Type: Report
System: The UNT Digital Library
The glasma initial state and JIMWLK factorization (open access)

The glasma initial state and JIMWLK factorization

We review recent work on understanding the next to leading order corrections to the classical fields that dominate the initial stages of a heavy ion collision. We have recently shown that the leading ln 1/x divergences of these corrections to gluon multiplicities can be factorized into the JIMWLK evolution of the color charge density distributions.
Date: August 26, 2008
Creator: Gelis, F.; Lappi, T. & Venugopalan, R.
Object Type: Article
System: The UNT Digital Library
Countercurrent Flow Limitation Experiments and Modeling for Improved Reactor Safety (open access)

Countercurrent Flow Limitation Experiments and Modeling for Improved Reactor Safety

This project is investigating countercurrent flow and “flooding” phenomena in light water reactor systems to improve reactor safety of current and future reactors. To better understand the occurrence of flooding in the surge line geometry of a PWR, two experimental programs were performed. In the first, a test facility with an acrylic test section provided visual data on flooding for air-water systems in large diameter tubes. This test section also allowed for development of techniques to form an annular liquid film along the inner surface of the “surge line” and other techniques which would be difficult to verify in an opaque test section. Based on experiences in the air-water testing and the improved understanding of flooding phenomena, two series of tests were conducted in a large-diameter, stainless steel test section. Air-water test results and steam-water test results were directly compared to note the effect of condensation. Results indicate that, as for smaller diameter tubes, the flooding phenomena is predominantly driven by the hydrodynamics. Tests with the test sections inclined were attempted but the annular film was easily disrupted. A theoretical model for steam venting from inclined tubes is proposed herein and validated against air-water data. Empirical correlations were proposed for …
Date: September 26, 2008
Creator: Vierow, Karen
Object Type: Report
System: The UNT Digital Library
Studies of Wire Compensation and Beam-beam Interaction in RHIC (open access)

Studies of Wire Compensation and Beam-beam Interaction in RHIC

None
Date: June 26, 2008
Creator: Kim, Hyung Jin, 1; Sen, T.; Abreu, N. P. & Fischer, W.
Object Type: Article
System: The UNT Digital Library