Resource Type

Physical limits for high ion charge states in pulsed discharges in vacuum (open access)

Physical limits for high ion charge states in pulsed discharges in vacuum

Short-pulse, high-current discharges in vacuum were investigated with the goal to maximize the ion charge state number. In a direct extension of previous work [Appl. Phys. Lett. 92, 041502 (2008)], the role of pulse length, rate of current rise, and current amplitude was studied. For all experimental conditions, the usable (extractable) mean ion charge state could not be pushed beyond 7+. Instead, a maximum of the mean ion charge state (about 6+ to 7+ for most cathode materials) was found for a power of 2-3 MW dissipated in the discharge gap. The maximum is the result of two opposing processes that occur when the power is increased: (i) the formation of higher ion charge states, and (ii) a greater production of neutrals (both metal and non-metal), which reduces the charge state via charge exchange collisions.
Date: December 23, 2008
Creator: Yushkov, Georgy & Anders, Andre
System: The UNT Digital Library
Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices (open access)

Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices

Mammary gland development, functional differentiation, and homeostasis are orchestrated and sustained by a balance of biochemical and biophysical cues from the organ's microenvironment. The three-dimensional microenvironment of the mammary gland, predominantly 'encoded' by a collaboration between the extracellular matrix (ECM), hormones, and growth factors, sends signals from ECM receptors through the cytoskeletal intracellular matrix to nuclear and chromatin structures resulting in gene expression; the ECM in turn is regulated and remodeled by signals from the nucleus. In this chapter, we discuss how coordinated ECM deposition and remodeling is necessary for mammary gland development, how the ECM provides structural and biochemical cues necessary for tissue-specific function, and the role of the cytoskeleton in mediating the extra - to intracellular dialogue occurring between the nucleus and the microenvironment. When operating normally, the cytoskeletal-mediated dynamic and reciprocal integration of tissue architecture and function directs mammary gland development, tissue polarity, and ultimately, tissue-specific gene expression. Cancer occurs when these dynamic interactions go awry for an extended time.
Date: December 23, 2008
Creator: Xu, Ren; Boudreau, Aaron & Bissell, Mina J
System: The UNT Digital Library