Resource Type

Temperature effect on low-k dielectric thin films studied by ERDA (open access)

Temperature effect on low-k dielectric thin films studied by ERDA

Low-k dielectric materials are becoming increasingly interesting as alternative to SiO2 with device geometries shrinking beyond the 65 nm technology node. At elevated temperatures hydrogen migration becomes an important degradation mechanism for conductivity breakdown in semiconductor devices. The possibility of hydrogen release during the fabrication process is, therefore, of great interest in the understanding of device reliability. In this study, various low-k dielectric films were subjected to thermal annealing at temperatures that are generally used for device fabrication. Elastic recoil detection analysis (ERDA) was used to investigate compositional changes and hydrogen redistribution in thin films of plasma-enhanced tetraethylortho-silicate (PETEOS), phosphorus doped silicon glass (PSG), silicon nitride (SiN) and silicon oxynitride (SiON). Except for an initial hydrogen release from the surface region in films of PETEOS and PSG, the results indicate that the elemental composition of the films was stable for at least 2 hours at 450◦C.
Date: September 23, 2008
Creator: Jensen, Jens; Possnert, Göran & Zhang, Yanwen
System: The UNT Digital Library
Exact solution of the envelope equations for a matched quadrupole-focused beam in the low space-charged limit (open access)

Exact solution of the envelope equations for a matched quadrupole-focused beam in the low space-charged limit

The Kapchinskij-Vladimirskij equations are widely used to study the evolution of the beam envelopes in a periodic system of quadrupole focusing cells. In this paper, we analyze the case of a matched beam. Our model is analogous to that used by Courant and Snyder [E.D. Courant and H.S. Snyder, Ann. Phys. 3, 1 (1958)]in obtaining a first-order approximate solution for a synchrotron. Here, we treat a linear machine and obtain an exact solution. The model uses a full occupancy, piecewise-constant focusing function and neglects space charge. There are solutions in an infinite number of bands as the focus strength is increased. We show that all these bands are stable. Our explicit results for the phase advance sigma and the envelope a(z) are exact for all phase advances except multiples of 180o, where the behavior is singular. We find that the peak envelope size is minimized at sigma = 90o. Actual operation in the higher bands would require very large, very accurate field strengths and would produce significantly larger envelope excursions.
Date: September 23, 2008
Creator: Anderson, O. A. & LoDestro, L. L.
System: The UNT Digital Library
Proceedings of the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring (open access)

Proceedings of the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring

These proceedings contain papers prepared for the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 23-25 September, 2008 in Portsmouth, Virginia. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.
Date: September 23, 2008
Creator: Wetovsky, Marv A; Aguilar-chang, Julio; Arrowsmith, Marie; Arrowsmith, Stephen; Baker, Diane; Begnaud, Michael et al.
System: The UNT Digital Library