Degree Department

Thermodynamics of the Abraham General Solvation Model: Solubility and Partition Aspects (open access)

Thermodynamics of the Abraham General Solvation Model: Solubility and Partition Aspects

Experimental mole fraction solubilities of several carboxylic acids (2-methoxybenzoic acid, 4-methoxybenzoic acid, 4-nitrobenzoic acid, 4-chloro-3-nitrobenzoic acid, 2-chloro-5-nitrobenzoic acid,2-methylbenzoic acid and ibuprofen) and 9-fluorenone, thianthrene and xanthene were measured in a wide range of solvents of varying polarity and hydrogen-bonding characteristics. Results of these measurements were used to calculate gas-to-organic solvent and water-to-organic solvent solubility ratios, which were then substituted into known Abraham process partitioning correlations. The molecular solute descriptors that were obtained as the result of these computations described the measured solubility data to within an average absolute deviation of 0.2 log units. The calculated solute descriptors also enable one to estimate many chemically, biologically and pharmaceutically important properties for the ten solutes studied using published mathematical correlations.
Date: August 2006
Creator: Stovall, Dawn Michele
System: The UNT Digital Library
Photochemical and Photophysical Properties of Gold(I) Complexes and Phosphorescence Sensitization of Organic Luminophores (open access)

Photochemical and Photophysical Properties of Gold(I) Complexes and Phosphorescence Sensitization of Organic Luminophores

Two major topics that involve synthetic strategies to enhance the phosphorescence of organic and inorganic luminophores have been investigated. The first topic involves, the photophysical and photochemical properties of the gold (I) complexes LAuIX (L = CO, RNC where R = alkyl or aryl group; X = halide or pseudohalide), which have been investigated and found to exhibit Au-centered phosphorescence and tunable photochemical reactivity. The investigations have shown a clear relationship between the luminescence energies and association modes. We have also demonstrated for the first time that aurophilic bonding and the ligand p-acceptance can sensitize the photoreactivity of Au(I) complexes. The second topic involves conventional organic fluorophores (arenes), which are made to exhibit room-temperature phosphorescence that originates from spin-orbit coupling owing to either an external or internal heavy atom effect in systematically designed systems that contain d10 metals. Facial complexation of polycyclic arenes to tris[{m-(3,4,5,6-tetrafluorophenylene)}mercury(II)], C18F12Hg3 (1) results in crystalline adducts that exhibit bright RGB (red-green-blue) phosphorescence bands at room temperature. This arene-centered phosphorescence is always accompanied by a reduction of the triplet excited state lifetime due to its sensitization by accelerating the radiative instead of the non-radiative decay. The results of both topics are significant for rational design of …
Date: August 2006
Creator: El-Bjeirami, Oussama
System: The UNT Digital Library
Electrochemical Study of Under-Potential Deposition Processes on Transition Metal Surfaces (open access)

Electrochemical Study of Under-Potential Deposition Processes on Transition Metal Surfaces

Copper under-potential deposition (UPD) on iridium was studied due to important implications it presents to the semiconductor industry. Copper UPD allows controlled superfilling on sub-micrometer trenches; iridium has characteristics to prevent copper interconnect penetration into the surrounding dielectric. Copper UPD is not favored on iridium oxides but data shows copper over-potential deposition when lower oxidation state Ir oxide is formed. Effect of anions in solution on silver UPD at platinum (Pt) electrodes was studied with the electrochemical quartz crystal microbalance. Silver UPD forms about one monolayer in the three different electrolytes employed. When phosphoric acid is used, silver oxide growth is identified due to presence of low coverage hydrous oxide species at potentials prior to the monolayer oxide region oxide region.
Date: August 2006
Creator: Flores Araujo, Sarah Cecilia
System: The UNT Digital Library
The synthesis and study of poly(N-isopropylacrylamide)/poly(acrylic acid) interpenetrating polymer network nanoparticle hydrogels. (open access)

The synthesis and study of poly(N-isopropylacrylamide)/poly(acrylic acid) interpenetrating polymer network nanoparticle hydrogels.

Homogeneous hydrogels made of an interpenetrating network of poly(N-isopropylacrylamide) (PNIPAm) and poly(acrylic acid) (PAAc) are synthesized by a two-step process; first making PNIPAm hydrogels and then interpenetrating acrylic acid throughout the hydrogel through polymerization. The kinetic growth of the IPN is plotted and an equation is fitted to the data. When diluted to certain concentrations in water, the hydrogels show reversible, inverse thermal gelation at about 34°C. This shows unique application to the medical field, as the transition is just below body temperature. A drug release experiment is performed using high molecular weight dyes, and a phase diagram is created through observation of the purified, concentrated gel at varying concentrations and temperatures.
Date: August 2006
Creator: Crouch, Stephen Wallace
System: The UNT Digital Library