63 Matching Results

Results open in a new window/tab.

A Tightly Coupled Particle-Fluid Model for DNA-Laden Flows in Complex Microscale Geometries (open access)

A Tightly Coupled Particle-Fluid Model for DNA-Laden Flows in Complex Microscale Geometries

We present a stable and convergent method for the computation of flows of DNA-laden fluids in microchannels with complex geometry. The numerical strategy combines a ball-rod model representation for polymers tightly coupled with a projection method for incompressible viscous flow. We use Cartesian grid embedded boundary methods to discretize the fluid equations in the presence of complex domain boundaries. A sample calculation is presented showing flow through a packed array microchannel in 2D.
Date: November 18, 2004
Creator: Trebotich, D; Miller, G H; Colella, P; Graves, D T; Martin, D F & Schwartz, P O
System: The UNT Digital Library
In-Situ TEM Observations of Interface Sliding and Migration in a Refined Lamellar TiAl Alloy (open access)

In-Situ TEM Observations of Interface Sliding and Migration in a Refined Lamellar TiAl Alloy

The stability of lamellar interfaces in lamellar TiAl by straining at ambient temperatures has been investigated using in-situ straining techniques performed in a transmission electron microscope in order to obtain direct evidence to support the previously proposed creep mechanisms in refined lamellar TiAl based upon the interface sliding in association with the cooperative motion of interfacial dislocations. The results have revealed that both sliding and migration of lamellar interfaces can take place as a result of the cooperative motion of interfacial dislocations.
Date: February 18, 2004
Creator: Schwartz, A J; Nieh, T G & Hsiung, L M
System: The UNT Digital Library
Development of Burning Plasma and Advanced Scenarios in the DIII-D Tokamak (open access)

Development of Burning Plasma and Advanced Scenarios in the DIII-D Tokamak

Significant progress in the development of burning plasma scenarios, steady-state scenarios at high fusion performance, and basic tokamak physics has been made by the DIII-D Team. Discharges similar to the ITER baseline scenario have demonstrated normalized fusion performance nearly 50% higher than required for Q = 10 in ITER, under stationary conditions. Discharges that extrapolate to Q {approx} 10 for longer than one hour in ITER at reduced current have also been demonstrated in DIII-D under stationary conditions. Proof of high fusion performance with full noninductive operation has been obtained. Underlying this work are studies validating approaches to confinement extrapolation, disruption avoidance and mitigation, tritium retention, ELM avoidance, and operation above the no-wall pressure limit. In addition, the unique capabilities of the DIII-D facility have advanced studies of the sawtooth instability with unprecedented time and space resolution, threshold behavior in the electron heat transport, and rotation in plasmas in the absence of external torque.
Date: October 18, 2004
Creator: Luce, T C
System: The UNT Digital Library
Crystal Level Continuum Modeling of Phase Transformations: The (alpha) <--> (epsilon) Transformation in Iron (open access)

Crystal Level Continuum Modeling of Phase Transformations: The (alpha) <--> (epsilon) Transformation in Iron

We present a crystal level model for thermo-mechanical deformation with phase transformation capabilities. The model is formulated to allow for large pressures (on the order of the elastic moduli) and makes use of a multiplicative decomposition of the deformation gradient. Elastic and thermal lattice distortions are combined into a single lattice stretch to allow the model to be used in conjunction with general equation of state relationships. Phase transformations change the mass fractions of the material constituents. The driving force for phase transformations includes terms arising from mechanical work, from the temperature dependent chemical free energy change on transformation, and from interaction energy among the constituents. Deformation results from both these phase transformations and elasto-viscoplastic deformation of the constituents themselves. Simulation results are given for the {alpha} to {epsilon} phase transformation in iron. Results include simulations of shock induced transformation in single crystals and of compression of polycrystals. Results are compared to available experimental data.
Date: October 18, 2004
Creator: Barton, N R; Benson, D J; Becker, R; Bykov, Y & Caplan, M
System: The UNT Digital Library
High Volume, Low Pressure Drop, Bioaerosol Collector Using a Multi-slit Virtual Impactor (open access)

High Volume, Low Pressure Drop, Bioaerosol Collector Using a Multi-slit Virtual Impactor

None
Date: May 18, 2004
Creator: Bergman, W; Shinn, J; Lochner, R; Sawyer, S; Milanovich, F & Jr, R M
System: The UNT Digital Library
Thermally induced dephasing in periodically poled KTiOPO4 nonlinear crystals (open access)

Thermally induced dephasing in periodically poled KTiOPO4 nonlinear crystals

Experimental data that exhibits a continuous-wave, second-harmonic intensity threshold (15 kW/cm{sup 2}) that causes two-photon nonlinear absorption which leads to time-dependent photochromic damage in periodically poled KTiOPO{sub 4} is presented and verified through a thermal dephasing model.
Date: March 18, 2004
Creator: Dawson, J W; Pennington, D M; Jovanovic, I; Liao, Z M; Payne, S A; Drobshoff, A D et al.
System: The UNT Digital Library
Compact neutron generator developement and applications (open access)

Compact neutron generator developement and applications

The Plasma and Ion Source Technology Group at the Lawrence Berkeley National Laboratory has been engaging in the development of high yield compact neutron generators for the last ten years. Because neutrons in these generators are formed by using either D-D, T-T or D-T fusion reaction, one can produce either mono-energetic (2.4 MeV or 14 MeV) or white neutrons. All the neutron generators being developed by our group utilize 13.5 MHz RF induction discharge to produce a pure deuterium or a mixture of deuterium-tritium plasma. As a result, ion beams with high current density and almost pure atomic ions can be extracted from the plasma source. The ion beams are accelerated to {approx}100 keV and neutrons are produced when the beams impinge on a titanium target. Neutron generators with different configurations and sizes have been designed and tested at LBNL. Their applications include neutron activation analysis, oil-well logging, boron neutron capture therapy, brachytherapy, cargo and luggage screening. A novel small point neutron source has recently been developed for radiography application. The source size can be 2 mm or less, making it possible to examine objects with sharper images. The performance of these neutron generators will be described in this paper.
Date: January 18, 2004
Creator: Leung, Ka-Ngo; Reijonen, Jani; Gicquel, Frederic; Hahto, Sami & Lou, Tak-Pui
System: The UNT Digital Library
Co2 geological sequestration (open access)

Co2 geological sequestration

Human activities are increasingly altering the Earth's climate. A particular concern is that atmospheric concentrations of carbon dioxide (CO{sub 2}) may be rising fast because of increased industrialization. CO{sub 2} is a so-called ''greenhouse gas'' that traps infrared radiation and may contribute to global warming. Scientists project that greenhouse gases such as CO{sub 2} will make the arctic warmer, which would melt glaciers and raise sea levels. Evidence suggests that climate change may already have begun to affect ecosystems and wildlife around the world. Some animal species are moving from one habitat to another to adapt to warmer temperatures. Future warming is likely to exceed the ability of many species to migrate or adjust. Human production of CO{sub 2} from fossil fuels (such as at coal-fired power plants) is not likely to slow down soon. It is urgent to find somewhere besides the atmosphere to put these increased levels of CO{sub 2}. Sequestration in the ocean and in soils and forests are possibilities, but another option, sequestration in geological formations, may also be an important solution. Such formations could include depleted oil and gas reservoirs, unmineable coal seams, and deep saline aquifers. In many cases, injection of CO2 into a …
Date: November 18, 2004
Creator: Xu, Tianfu
System: The UNT Digital Library
Studies of nondegenerate, quasi-phase-matched optical parametric amplification (open access)

Studies of nondegenerate, quasi-phase-matched optical parametric amplification

We have performed extensive numerical studies of quasi-phase-matched optical parametric amplification with the aim to improve its nondegenerate spectral bandwidth. Our multi-section fan-out design calculations indicate a 35-fold increase in spectral bandwidth.
Date: March 18, 2004
Creator: Lawrence Livermore National Laboratory
System: The UNT Digital Library
Proton irradiation effects on 2Gb flash memory (open access)

Proton irradiation effects on 2Gb flash memory

The authors report total ionizing dose and single event effects on 2Gb Samsung flash memory devices after exposure to 200 MeV protons to various doses up to 83 krad(Si). They characterize observed failures and single event upsets on 22 devices from two different lots. Devices from both lots are robust to greater than 20 krad(Si) although they see evidence for lot-to-lot variation where only one lot appears robust up to about 50 krad(Si). Single event upsets are observed at a relatively low rate and are consistent with single isolated bit flips within registers that transfer bits to and from the flash memory cells.
Date: August 18, 2004
Creator: Wester, William; Nelson, Charles & Marriner, John
System: The UNT Digital Library
B Physics at CDF (open access)

B Physics at CDF

Due to the large b{bar b} cross section at 1.96 TeV p - {bar p} collisions, the Tevatron is currently the most copious source of B hadrons. Recent detector upgrades for Run II have made these more accessible, allowing for a wide range of B and C/P physics with B hadrons of all flavours. In this paper we present B-physics results, and, using the versatile hadronic Two Track Trigger, a search for {Xi}(1860), from up to 240 pb{sup -1} of data.
Date: June 18, 2004
Creator: Rademacker, J.
System: The UNT Digital Library
A Hybrid Ion-Source Concept for a Proton Driver Front-End (open access)

A Hybrid Ion-Source Concept for a Proton Driver Front-End

A novel concept for creating intense beams of negative hydrogen ion beams has been devised, and first steps towards its realization have been taken. In this approach, an ECR plasma generator operating at 2.45 GHz frequency is utilized as a plasma cathode, and electrons are extracted instead of ions and injected at moderate energy into an SNS type multi-cusp H{sup -} ion source. This secondary source is then driven by chopped d. c. power, rather than rf power, but does not need filaments which are the cause for the rather short lifetime of conventional H{sup -} sources. The development of this ion source is primarily aimed at the future beam-power goal of 3 MW for the Spallation Neutron Source (SNS) [1] that will be pursued after the start of SNS operations. The first two phases of this development effort have been successfully passed: assembly of a test stand and verification of the performance of an rf-driven SNS ion-source prototype and extraction of electrons with more than 200 mA current from a 2.45-GHz ECR ion source obtained on loan from Argonne National Laboratory. An electron-extraction chamber that joins these ECR and H{sup -} sources has been fabricated, and the next goal …
Date: October 18, 2004
Creator: Keller, R.; Luft, P.; Regis, M.; Wallig, J.; Monroy, M.; Ratti,A. et al.
System: The UNT Digital Library
Hydrogen Isotope Exchange Properties of Porous Solids Containing Hydrogen (open access)

Hydrogen Isotope Exchange Properties of Porous Solids Containing Hydrogen

Porous solids such as activated alumina, silica and molecular sieves generally contain significant amounts of hydrogen atoms in the form of H2O or OH even at high temperature and low humidity environment. A significant amount of this hydrogen is available for reversible isotopic exchange. This exchange reaction is slow under normal conditions and does not render itself to practical applications. But if the exchange kinetics is improved this reaction has the potential to be used for tritium removal from gas streams or for hydrogen isotopic separation.The use of catalysts to improve the exchange kinetics between hydrogen isotope in the gas phase and that in the solid phase was investigated. Granules of alumina, silica and molecular sieve were coated with platinum or palladium as the catalyst. The granules were packed in a 2-cm diameter column for isotope exchange tests. Gas streams containing different concentrations of deuterium in nitrogen or argon were fed through the protium saturated column. Isotope concentration in column effluent was monitored to generate isotope break-through curves. The curves were analyzed to produce information on the kinetics and capacity of the material. The results showed that all materials tested provided some extent of isotope exchange but some were superior …
Date: August 18, 2004
Creator: HEUNG, LEUNGK.
System: The UNT Digital Library
Pulser for the Tevatron electron lens gun (open access)

Pulser for the Tevatron electron lens gun

To compensate for beam-beam interaction in Tevatron, an ''electron lens'' is considered to be an effective instrument. When a bunch of electrons with energy in the range (10-16) kV is overlapping with a bunch of antiprotons, the resulting focusing force for antiprotons can be adjusted by changing the electron beam current and by profiling its radial distribution. There exist several scenarios of how the system must function. According to one of them, an electron gun that supplies electrons must be fed by voltage pulses that follow with the frequency of antiproton bunches circulating in the Tevatron, which is about 2.5 MHz. To provide focusing tailored for each individual antiproton bunch, a modulator of the gun (pulser) must allow pulse-to-pulse voltage change. This report will cover main approaches to a design of a pulser for use with the gun of the Tevatron Electron Lens.
Date: May 18, 2004
Creator: al., Iouri Terechkine et
System: The UNT Digital Library
The Beyond the standard model working group: Summary report (open access)

The Beyond the standard model working group: Summary report

In this working group we have investigated a number of aspects of searches for new physics beyond the Standard Model (SM) at the running or planned TeV-scale colliders. For the most part, we have considered hadron colliders, as they will define particle physics at the energy frontier for the next ten years at least. The variety of models for Beyond the Standard Model (BSM) physics has grown immensely. It is clear that only future experiments can provide the needed direction to clarify the correct theory. Thus, our focus has been on exploring the extent to which hadron colliders can discover and study BSM physics in various models. We have placed special emphasis on scenarios in which the new signal might be difficult to find or of a very unexpected nature. For example, in the context of supersymmetry (SUSY), we have considered: how to make fully precise predictions for the Higgs bosons as well as the superparticles of the Minimal Supersymmetric Standard Model (MSSM) (parts III and IV); MSSM scenarios in which most or all SUSY particles have rather large masses (parts V and VI); the ability to sort out the many parameters of the MSSM using a variety of signals …
Date: March 18, 2004
Creator: al., G. Azuelos et
System: The UNT Digital Library
Collective Space-Charge Phenomena in the Source Region (open access)

Collective Space-Charge Phenomena in the Source Region

For many devices space-charge-dominated behavior, including the excitation of space-charge collective modes, can occur in the source region, even when the downstream characteristics are not space-charge-dominated. Furthermore, these modes can remain undamped for many focusing periods. Traditional studies of the source region in particle beam systems have emphasized the behavior of averaged beam characteristics, such as total current, rms beam size, or emittance, rather than the details of the full beam distribution function that are necessary to predict the excitation of collective modes. A primary tool for understanding the detailed evolution of a space-charge dominated beam in the source region has been the use of simulation in concert with detailed experimental measurement. However, ''first-principle'' simulations beginning from the emitter surface have often displayed substantial differences from what is measured. This is believed to result from sensitivities in the beam dynamics to small changes in the mechanical characteristics of the gun structure, as well as to similar sensitivities in the numerical methods. Simulations of the beam in the source region using the particle-in-cell WARP code and comparisons to experimental measurements at the University of Maryland are presented to illustrate the complexity in beam characteristics that can occur in the source region. …
Date: September 18, 2004
Creator: Haber, I.; Bernal, S.; Celata, C. M.; Friedman, A.; Grote, D. P.; Kishek, R. A. et al.
System: The UNT Digital Library
Conference Paper NFO-7:7th International Conference on Near-Field Optics and Related Technologies (open access)

Conference Paper NFO-7:7th International Conference on Near-Field Optics and Related Technologies

The seventh conference in the NFO conference series, held here in Rochester, provided to be the principal forum for advances in sub-wavelength optics, near-field optical microscopy, local field enhancement, instrumental developments and the ever-increasing range of applications. This conference brought together the diverse scientific communities working on the theory and application of near-field optics (NFO) and related techniques.
Date: October 18, 2004
Creator: Novotny, Prof.Dr. Lukas
System: The UNT Digital Library
Sub-Angstrom electron microscopy for sub-Angstrom nano-metrology (open access)

Sub-Angstrom electron microscopy for sub-Angstrom nano-metrology

The revolution in nanoscale science and technology requires instrumentation for observation and metrology - we must be able to see and measure what we build. Because nano-devices operate on the level of a few molecules, or even a few atoms, accurate atomic-scale imaging is called for. High-resolution aberration-corrected electron microscopes (both TEM and STEM) can provide valuable measurements at the sub-Angstrom level. Over the next decade, extension of TEM and STEM resolutions to half-Angstrom levels by next-generation aberration-corrected electron microscopes will advance the capabilities of these essential tools for atomic-scale structural characterization. Because improvements in resolution allow for separation of atom columns in many more projection directions, these microscopes will provide much improved three-dimensional characterization of the shape and internal structure of nanodevices and catalyst nanoparticles (perhaps even true 3-D imaging), and hence provide essential feedback in the nano-theory/construction/measurement loop.
Date: January 18, 2004
Creator: O'Keefe, Michael A. & Allard, Lawrence F.
System: The UNT Digital Library
Waste Form Development for the Solidification of PDCF/MOX Liquid Waste Streams (open access)

Waste Form Development for the Solidification of PDCF/MOX Liquid Waste Streams

At the Savannah River Site, part of the Department of Energy's nuclear materials complex located in South Carolina, cementation has been selected as the solidification method for high-alpha and low-activity waste streams generated in the planned plutonium disposition facilities. A Waste Solidification Building (WSB) that will be used to treat and solidify three radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility) and the Mixed Oxide Fuel Fabrication Facility is in the preliminary design stage. The WSB is expected to treat a transuranic (TRU) waste stream composed primarily of americium and two low-level waste (LLW) streams. The acidic wastes will be concentrated in the WSB evaporator and neutralized in a cement head tank prior to solidification. A series of TRU mixes were prepared to produce waste forms exhibiting a range of processing and cured properties. The LLW mixes were prepared using the premix from the preferred TRU waste form. All of the waste forms tested passed the Toxicity Characteristic Leaching Procedure. After processing in the WSB, current plans are to dispose of the solidified TRU waste at the Waste Isolation Pilot Plant in New Mexico and the solidified LLW waste at an approved low-level waste disposal facility.
Date: February 18, 2004
Creator: COZZI, ALEX
System: The UNT Digital Library
Corrosion Behavior of Titanium Grade 7 in Fluoride-Containing NaCl Brines (open access)

Corrosion Behavior of Titanium Grade 7 in Fluoride-Containing NaCl Brines

Titanium Grade 7 (UNS R52400) is a titanium-based alloy with 0.12-0.25% Pd. The addition of the small amount of palladium is to ennoble the corrosion potential of Ti, thus improving the corrosion resistance of titanium in reducing environments. In most aqueous environments, Ti and Ti alloys demonstrate excellent corrosion resistance due to the protective oxide film that forms spontaneously and remains stable on the surface. However, Ti and Ti alloys are susceptible to corrosion in fluoride-containing environments due to the formation of complexes such as TiF{sub 6}{sup 2-} and TiF{sub 6}{sup 3-}, which are stable and soluble in electrolyte solutions. Without the presence of fluoride, only slight effects from [Cl{sup -}], pH and temperature have been reported [1]. It has been reported that the kinetics of passive corrosion of titanium in neutral solutions and controlled by the migration of the defects in the oxide across the surface film [2]. Thus, the increase in thickness and improvement in film properties, by thermal oxidation, would lead to a significant decrease in the susceptibility to film breakdown and in the passive corrosion rate. This report summarizes recent experiment results in studies of the environmental influence on the corrosion behavior of Titanium Grade 7 …
Date: May 18, 2004
Creator: unknown
System: The UNT Digital Library
Dose-dependent misrejoining of radiation-induced DNA double-strand breaks in human fibroblasts: Experimental and theoretical study for high and low LET radiation (open access)

Dose-dependent misrejoining of radiation-induced DNA double-strand breaks in human fibroblasts: Experimental and theoretical study for high and low LET radiation

Misrejoining of DNA double-strand breaks (DSBs) was measured in human primary fibroblasts after exposure to X-rays and high LET particles (He, N and Fe) in the dose range 10-80 Gy. To measure joining of wrong DNA ends, the integrity of a 3.2 Mbp restriction fragment was analyzed directly after exposure and after 16 hr of repair incubation. It was found that the misrejoining frequency for X-rays was non-linearly related to dose, with less probability of misrejoining at low doses than at high doses. The dose dependence for the high LET particles, on the other hand, was closer to being linear, with misrejoining frequencies higher than for X-rays particularly at the lower doses. These experimental results were simulated with a Monte-Carlo approach that includes a cell nucleus model with all 46 chromosomes present, combined with realistic track structure simulations to calculate the geometrical positions of all DSBs induced for each dose. The model assumes that the main determinant for misrejoining probability is the distance between two simultaneously present DSBs. With a Gaussian interaction probability function with distance, it was found that both the low and high LET data could be fitted with an interaction distance (sigma of the Gaussian curve) of …
Date: November 18, 2004
Creator: Rydberg, Bjorn; Cooper, Brian; Cooper, Priscilla K.; Holley, William & Chatterjee, Aloke
System: The UNT Digital Library
Recent theoretical developments in B --&gt;Xs l+ l- decays (open access)

Recent theoretical developments in B --&gt;Xs l+ l- decays

We present a concise review of the theoretical status of the rare semileptonic {bar B} {yields} X{sub s}{ell}{sup +}{ell}{sup -} decays in the standard model. Particular attention is thereby devoted to the recent theoretical progress concerning, on the one hand the next-to-next-to-leading order QCD calculation and, on the other hand the analysis of phenomenological important subleading electroweak effects.
Date: May 18, 2004
Creator: Haisch, Ulrich
System: The UNT Digital Library
Evidence for a Proton Transfer Network and a Required Persulfide-Bond-Forming Cysteine Residue in Ni-Containing Carbon Monoxide Dehydrogenases (open access)

Evidence for a Proton Transfer Network and a Required Persulfide-Bond-Forming Cysteine Residue in Ni-Containing Carbon Monoxide Dehydrogenases

OAK-B135 Carbon monoxide dehydrogenase from Moorella thermoacetica catalyzes the reversible oxidation of CO to CO2 at a nickel-iron-sulfur active-site called the C-cluster. Mutants of a proposed proton transfer pathway and of a cysteine residue recently found to form a persulfide bond with the C-cluster were characterized. Four semi-conserved histidine residues were individually mutated to alanine. His116 and His122 were essential to catalysis, while His113 and His119 attenuated catalysis but were not essential. Significant activity was ''rescued'' by a double mutant where His116 was replaced by Ala and His was also introduced at position 115. Activity was also rescued in double mutants where His122 was replaced by Ala and His was simultaneously introduced at either position 121 or 123. Activity was also ''rescued'' by replacing His with Cys at position 116. Mutation of conserved Lys587 near the C-cluster attenuated activity but did not eliminate it. Activity was virtually abolished in a double mutant where Lys587 and His113 were both changed to Ala. Mutations of conserved Asn284 also attenuated activity. These effects suggest the presence of a network of amino acid residues responsible for proton transfer rather than a single linear pathway. The Ser mutant of the persulfide-forming Cys316 was essentially inactive …
Date: May 18, 2004
Creator: Kim, Eun Jin; Feng, Jian; Bramlett, Matthew R. & Lindahl, Paul A.
System: The UNT Digital Library
Performance Assessment/Composite Analysis Modeling to Support a Holistic Strategy for the Closure of F Area, a Large Nuclear Complex at the Savannah River Site (open access)

Performance Assessment/Composite Analysis Modeling to Support a Holistic Strategy for the Closure of F Area, a Large Nuclear Complex at the Savannah River Site

A performance-based approach is being used at the Savannah River Site to close the F area Complex. F Area consists of a number of large industrial facilities including plutonium separations, uranium fuel fabrication, tanks for storing high level waste and a number of smaller operations. A major part of the overall closure strategy is the use of techniques derived from the Performance Assessment and Composite Analysis requirements for low level waste disposal at DOE sites. This process will provide a means of demonstrating the basis for deactivation, decommissioning and closure decisions to management, stakeholders and regulators.
Date: February 18, 2004
Creator: COOK, JAMES
System: The UNT Digital Library