Resource Type

Month

The impact of covariance information on criticality safety calculations in the resolved resonance energy range. (open access)

The impact of covariance information on criticality safety calculations in the resolved resonance energy range.

Resonance data play a significant role in the calculations of systems considered for criticality safety applications. K{sub eff}, the major parameter of interest in such a type of calculations, can be heavily dependent both on the quality of the resonance data as well as on the accuracy achieved in the processing of these data. If reasonable uncertainty values are available, in conjunction with their correlation in energy and among type of resonance parameters, one can exploit existing methodologies, based on perturbation theory, in order to evaluate their impact on the integral parameter of interest, i.e., K{sub eff} in our case, in practical applications. In this way, one could be able to judge if the uncertainty on specific quantities, e.g., covariances on resonance data, have a significant impact and, therefore, deserve a careful evaluation. This report, first, will recall the basic principles that lie behind an uncertainty evaluation and review the current situation in the field of covariance data. Then an attempt is made for defining a methodology that allows calculating covariances values for resolved resonance parameters. Finally, practical applications, of interest for criticality safety calculations, illustrate the impact of different assumptions on correlations among resolved resonance parameters.
Date: June 11, 2004
Creator: Naberejnev, D. G.; Palmiotti, G. & Yang, W. S.
System: The UNT Digital Library
Geologic Investigation of a Potential Site for a Next-Generation Reactor Neutrino Oscillation Experiment -- Diablo Canyon, San Luis Obispo County, CA (open access)

Geologic Investigation of a Potential Site for a Next-Generation Reactor Neutrino Oscillation Experiment -- Diablo Canyon, San Luis Obispo County, CA

This report provides information on the geology and selected physical and mechanical properties of surface rocks collected at Diablo Canyon, San Luis Obispo County, California as part of the design and engineering studies towards a future reactor neutrino oscillation experiment. The main objective of this neutrino project is to study the process of neutrino flavor transformation or neutrino oscillation by measuring neutrinos produced in the fission reactions of a nuclear power plant. Diablo Canyon was selected as a candidate site because it allows the detectors to be situated underground in a tunnel close to the source of neutrinos (i.e., at a distance of several hundred meters from the nuclear power plant) while having suitable topography for shielding against cosmic rays. The detectors have to be located underground to minimize the cosmic ray-related background noise that can mimic the signal of reactor neutrino interactions in the detector. Three Pliocene-Miocene marine sedimentary units dominate the geology of Diablo Canyon: the Pismo Formation, the Monterey Formation, and the Obispo Formation. The area is tectonically active, located east of the active Hosgri Fault and in the southern limb of the northwest trending Pismo Syncline. Most of the potential tunnel for the neutrino detector lies …
Date: June 11, 2004
Creator: Onishi, Celia Tiemi; Dobson, Patrick; Nakagawa, Seiji; Glaser, Steven & Galic, Dom
System: The UNT Digital Library
Simulating Afterburn with LLNL Hydrocodes (open access)

Simulating Afterburn with LLNL Hydrocodes

Presented here is a working methodology for adapting a Lawrence Livermore National Laboratory (LLNL) developed hydrocode, ALE3D, to simulate weapon damage effects when afterburn is a consideration in the blast propagation. Experiments have shown that afterburn is of great consequence in enclosed environments (i.e. bomb in tunnel scenario, penetrating conventional munition in a bunker, or satchel charge placed in a deep underground facility). This empirical energy deposition methodology simulates the anticipated addition of kinetic energy that has been demonstrated by experiment (Kuhl, et. al. 1998), without explicitly solving the chemistry, or resolving the mesh to capture small-scale vorticity. This effort is intended to complement the existing capability of either coupling ALE3D blast simulations with DYNA3D or performing fully coupled ALE3D simulations to predict building or component failure, for applications in National Security offensive strike planning as well as Homeland Defense infrastructure protection.
Date: June 11, 2004
Creator: Daily, L D
System: The UNT Digital Library
Science & Technology Review July/August 2004 (open access)

Science & Technology Review July/August 2004

None
Date: June 11, 2004
Creator: Henson, V E
System: The UNT Digital Library