Application of the Scenario Planning Process - a Case Study: The Technical Information Department at the Lawrence Livermore National Laboratory (open access)

Application of the Scenario Planning Process - a Case Study: The Technical Information Department at the Lawrence Livermore National Laboratory

When the field of modern publishing was on a collision course with telecommunications, publishing organizations had to come up to speed in fields that were, heretofore, completely foreign and technologically forbidding to them. For generations, the technology of publishing centered on offset lithography, typesetting, and photography--fields that saw evolutionary and incremental change from the time of Guttenberg. But publishing now includes making information available over the World Wide Web--Internet publishing--with its ever-accelerating rate of technological change and dependence on computers and networks. Clearly, we need a methodology to help anyone in the field of Internet publishing plan for the future, and there is a well-known, well-tested technique for just this purpose--Scenario Planning. Scenario Planning is an excellent tool to help organizations make better decisions in the present based on what they identify as possible and plausible scenarios of the future. Never was decision making more difficult or more crucial than during the years of this study, 1996-1999. This thesis takes the position that, by applying Scenario Planning, the Technical Information Department at LLNL, a large government laboratory (and organizations similar to it), could be confident that moving into the telecommunications business of Internet publishing stood a very good chance of …
Date: November 26, 2001
Creator: Schuster, J A
System: The UNT Digital Library
Optical Parametric Amplification for High Peak and Average Power (open access)

Optical Parametric Amplification for High Peak and Average Power

Optical parametric amplification is an established broadband amplification technology based on a second-order nonlinear process of difference-frequency generation (DFG). When used in chirped pulse amplification (CPA), the technology has been termed optical parametric chirped pulse amplification (OPCPA). OPCPA holds a potential for producing unprecedented levels of peak and average power in optical pulses through its scalable ultrashort pulse amplification capability and the absence of quantum defect, respectively. The theory of three-wave parametric interactions is presented, followed by a description of the numerical model developed for nanosecond pulses. Spectral, temperature and angular characteristics of OPCPA are calculated, with an estimate of pulse contrast. An OPCPA system centered at 1054 nm, based on a commercial tabletop Q-switched pump laser, was developed as the front end for a large Nd-glass petawatt-class short-pulse laser. The system does not utilize electro-optic modulators or multi-pass amplification. The obtained overall 6% efficiency is the highest to date in OPCPA that uses a tabletop commercial pump laser. The first compression of pulses amplified in highly nondegenerate OPCPA is reported, with the obtained pulse width of 60 fs. This represents the shortest pulse to date produced in OPCPA. Optical parametric amplification in {beta}-barium borate was combined with laser amplification …
Date: November 26, 2001
Creator: Jovanovic, I
System: The UNT Digital Library