Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma Quarterly Technical Progress Report: January-March 2005 (open access)

Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma Quarterly Technical Progress Report: January-March 2005

West Carney field--one of the newest fields discovered in Oklahoma--exhibits many unique production characteristics. These characteristics include: (1) decreasing water-oil ratio; (2) decreasing gas-oil ratio followed by an increase; (3) poor prediction capability of the reserves based on the log data; and (4) low geological connectivity but high hydrodynamic connectivity. The purpose of this investigation is to understand the principal mechanisms affecting the production, and propose methods by which we can extend the phenomenon to other fields with similar characteristics. In our experimental investigation section, we present the data on methane injection using huff-n-puff process. It appears that additional oil can be recovered using methane as a solvent. Additional experiments will be needed to confirm our analysis. Our engineering analysis has laid out detailed indicators to make the de-watering successful. Using those indicators, we are currently investigating potential in fill well locations in West Carney field. Our technology transfer activities continued this quarter with two presentations and one workshop.
Date: April 1, 2005
Creator: Kelkar, Mohan
System: The UNT Digital Library
Carbon Sequestration in Reclaimed Mined Soils of Ohio Quarterly Report (open access)

Carbon Sequestration in Reclaimed Mined Soils of Ohio Quarterly Report

Assessment of soil organic carbon (SOC) sequestration potential of reclaimed minesoils (RMS) is important for preserving environmental quality and increasing agronomic yields. The mechanism of physical SOC sequestration is achieved by encapsulation of SOM in spaces within macro and microaggregates. The experimental sites, owned and maintained by American Electrical Power, were characterized by distinct age chronosequences of reclaimed minesoils and were located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. These sites were reclaimed both with and without topsoil application, and were under continuous grass or forest cover. In this report results are presented from the sites reclaimed in 2003 (R03-G), in 1973 (R73-F), in 1969 (R69-G), in 1962 (R62-G and R62-F) and in 1957 (R57-F). Three sites are under continuous grass cover and the three under forest cover since reclamation. Three bulk soil samples were collected from each site from three landscape positions (upper; middle, and lower) for 0-15 and 15-30 cm depths. The samples were air dried and using wet sieving technique were fractionated into macro (> 2mm), meso (2-0.25 mm) and microaggregate (0.25-0.053 mm). These fractions were weighted separately and water stable aggregation (WSA) and geometric mean (GMD) and mean weight (MWD) diameters of aggregates were …
Date: April 1, 2005
Creator: Shukla, M.K. & Lal, R.
System: The UNT Digital Library
Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma Quarterly Technical Progress Report: January-March 2003 (open access)

Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma Quarterly Technical Progress Report: January-March 2003

West Carney Field produces from Hunton Formation. All the wells produce oil, water and gas. The main objective of this study is to understand the unique behavior observed in the field. This behavior includes: (1) Decrease in WOR over time; (2) Decrease in GOR at initial stages; (3) High decline rates of oil and gas; and (4) strong hydrodynamic connectivity between wells. This report specifically addresses two issues relevant to our understanding of the West Carney reservoir. By using core and log data as well as fluorescence information, we demonstrate that our hypothesis of how the reservoir is formed is consistent with these observations. Namely, oil migrated in water wet reservoir, over time, oil changed the wettability of some part of the reservoir, oil eventually leaked to upper formations prompting re-introduction of water into reservoir. Because of change in wettability, different pore size distributions responded differently to water influx. This hypothesis is consistent with fluorescence and porosity data, as we explain it in this quarterly report. The second issue deals with how to best calculate connected oil volume in the reservoir. The log data does not necessarily provide us with relevant information regarding oil in place. However, we have developed …
Date: April 1, 2003
Creator: Kelkar, Mohan
System: The UNT Digital Library
Analysis of Devonian Black Shales in Kentucky for Potential Carbon Dioxide Sequestration and Enhanced Natural Gas Production Quarterly Report: January-March 2004 (open access)

Analysis of Devonian Black Shales in Kentucky for Potential Carbon Dioxide Sequestration and Enhanced Natural Gas Production Quarterly Report: January-March 2004

CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed …
Date: April 1, 2004
Creator: Nuttall, Brandon C.
System: The UNT Digital Library