Imaging of magnetic DW injection processed in patterened Ni80Fe20 structures (open access)

Imaging of magnetic DW injection processed in patterened Ni80Fe20 structures

Magnetization reversal in patterned ferromagnetic nanowires usually occurs via domain wall (DW) nucleation and propagation from one end (or both ends) of the wire which can be significantly reduced by a large, magnetically soft pad on one of the wire ends. These 'nucleation pads' reverse at lower fields than an isolated nanowire and introduce a DW to the wire from the wire end attached to the pad. Once a critical 'injection' field is reached, the DW sweeps through the wire, reversing its magnetization. Nucleation pads are frequently used as part of nanowire devices and experimental structures. Magnetic-field-driven shift register memory can include an injection pad to write data while those attached to nanowire spiral turn sensors act as both a source and sink of domain walls. Both of these devices use two-dimensional wire circuits and therefore require the use of orthogonal in-plane magnetic fields to drive domain walls through wires of different orientations. These bi-axial fields can significantly alter the fields at which DW injection occurs and control the number of different injection modes. We have used magnetic transmission soft X-ray microscopy (M-TXM) [6] providing 25nm spatial resolution to image the evolution of magnetization configurations in patterned 24nm thick Ni{sub …
Date: March 23, 2009
Creator: Bryan, M. T.; Basu, S.; Fry, P. W.; Schrefl, T.; Gibbs, M.R.J.; Allwood, D. A. et al.
System: The UNT Digital Library
GAMMA-PULSE-HEIGHT EVALUATION OF A USA SAVANNAH RIVER SITE BURIAL GROUND SPECIAL CONFIGURATION WASTE ITEM (open access)

GAMMA-PULSE-HEIGHT EVALUATION OF A USA SAVANNAH RIVER SITE BURIAL GROUND SPECIAL CONFIGURATION WASTE ITEM

The Savannah River Site (SRS) Burial Ground had a container labeled as Box 33 for which they had no reliable solid waste stream designation. The container consisted of an outer box of dimensions 48-inch x 46-inch x 66-inch and an inner box that contained high density and high radiation dose material. From the outer box Radiation Control measured an extremity dose rate of 22 mrem/h. With the lid removed from the outer box, the maximum dose rate measured from the inner box was 100 mrem/h extremity and 80 mrem/h whole body. From the outer box the material was sufficiently high in density that the Solid Waste Management operators were unable to obtain a Co-60 radiograph of the contents. Solid Waste Management requested that the Analytical Development Section of Savannah River National Laboratory perform a {gamma}-ray assay of the item to evaluate the radioactive content and possibly to designate a solid waste stream. This paper contains the results of three models used to analyze the measured {gamma}-ray data acquired in an unusual configuration.
Date: March 23, 2009
Creator: Dewberry, R.; Sigg, R. & Salaymeh, S.
System: The UNT Digital Library
Linear Free Energy Relationship Correlations for Room Temperature Ionic Liquids: Revised Cation-Specific and Anion-Specific Equation Coefficients for Predictive Applications Covering a Much Larger Area of Chemical Space (open access)

Linear Free Energy Relationship Correlations for Room Temperature Ionic Liquids: Revised Cation-Specific and Anion-Specific Equation Coefficients for Predictive Applications Covering a Much Larger Area of Chemical Space

Article discussing linear free energy relationship correlations for room temperature ionic liquids and revised cation-specific and anion-specific equation coefficients for predictive applications covering a much larger area of chemical space.
Date: March 23, 2009
Creator: Sprunger, Laura M.; Gibbs, Jennifer; Proctor, Amy; Acree, William E. (William Eugene); Abraham, M. H. (Michael H.); Meng, Yunjing et al.
System: The UNT Digital Library