Month

Inertial fusion technology spin-offs-history provides a glimpse of the future (open access)

Inertial fusion technology spin-offs-history provides a glimpse of the future

The development and demonstration of inertial fusion is incredibly challenging because it requires simultaneously controlling and precisely measuring parameters at extreme values in energy, space, and time. The challenges range from building megajoule (10{sup 6} J) drivers that perform with percent-level precision to fabricating targets with submicron specifications to measuring target performance at micron scale (10{sup -6} m) with picosecond (10{sup -12} s) time resolution. Over the past 30 years in attempting to meet this challenge, the inertial fusion community around the world has invented new technologies in lasers, particle beams, pulse power drivers, diagnostics, target fabrication, and other areas. These technologies have found applications in diverse fields of industry and science. Moreover, simply assembling the teams with the background, experience, and personal drive to meet the challenging requirements of inertial fusion has led to spin-offs in unexpected directions, for example, in laser isotope separation, extreme ultraviolet (EUV) lithography for microelectronics, compact and inexpensive radars, advanced laser materials processing, and medical technology. It is noteworthy that more than 40 R&D 100 awards, the ''Oscars of applied research'' have been received by members of the inertial fusion community over this period. Not surprisingly, the inertial fusion community has created many new …
Date: March 7, 2000
Creator: Powell, H
System: The UNT Digital Library