Resource Type

Serial/Series Title

FY 2005 Congressional Earmark: The Environmental Institute Fellowship Program (open access)

FY 2005 Congressional Earmark: The Environmental Institute Fellowship Program

Congressional Earmark Funding was used to create a Postdoctoral Environmental Fellowship Program, interdisciplinary Environmental Working Groups, and special initiatives to create a dialogue around the environment at the University of Massachusetts Amherst to mobilize faculty to work together to respond to emerging environmental needs and to build institutional capacity to launch programmatic environmental activities across campus over time. Developing these networks of expertise will enable the University to more effectively and swiftly respond to emerging environmental needs and assume a leadership role in varied environmental fields. Over the course of the project 20 proposals were submitted to a variety of funding agencies involving faculty teams from 19 academic departments; 4 projects were awarded totaling $950,000; special events were organized including the Environmental Lecture Series which attracted more than 1,000 attendees over the course of the project; 75 University faculty became involved in one or more Working Groups (original three Working Groups plus Phase 2 Working Groups); an expertise database was developed with approximately 275 faculty involved in environmental research and education as part of a campus-wide network of environmental expertise; 12 University centers and partners participated; and the three Environmental Fellows produced 3 publications as well as a number of …
Date: February 6, 2007
Creator: Tracey, Sharon & Taupier, Richard
Object Type: Text
System: The UNT Digital Library
FY05 LDRD Final ReportNanomaterials for Radiation Detection (open access)

FY05 LDRD Final ReportNanomaterials for Radiation Detection

We have demonstrated that it is possible to enhance current radiation detection capability by manipulating the materials at the nano level. Fabrication of three-dimensional (3-D) nanomaterial composite for radiation detection has great potential benefits over current semiconductor- and scintillation-based technologies because of the precise control of material-radiation interaction and modulation of signal output. It is also a significant leap beyond current 2-D nanotechnology. Moreover, since we are building the materials using a combination of top-down and bottom-up approaches, this strategy to make radiation detection materials can provide significant improvement to radiation-detection technologies, which are currently based on difficult-to-control bulk crystal growth techniques. We are applying this strategy to tackle two important areas in radiation detection: gamma-rays and neutrons. In gamma-ray detection, our first goal is to employ nanomaterials in the form of quantum-dot-based mixed matrices or nanoporous semiconductors to achieve scintillation output several times over that from NaI(Tl) crystals. In neutron detection, we are constructing a 3-D structure using a doped nanowire ''forest'' supported by a boron matrix and evaluating the detection efficiency of different device geometry with simulation.
Date: February 6, 2006
Creator: Wang, T. F.; Letant, S. E.; Nikolic, R. J. & Chueng, C. L.
Object Type: Report
System: The UNT Digital Library