Radiation Doses to Hanford Workers from Natural Potassium-40 (open access)

Radiation Doses to Hanford Workers from Natural Potassium-40

The chemical element potassium is an essential mineral in people and is subject to homeostatic regulation. Natural potassium comprises three isotopes, 39K, 40K, and 41K. Potassium-40 is radioactive, with a half life of 1.248 billion years. In most transitions, it emits a β particle with a maximum energy of 0.560 MeV, and sometimes a gamma photon of 1.461 MeV. Because it is ubiquitous, 40K produces radiation dose to all human beings. This report contains the results of new measurements of 40K in 248 adult females and 2,037 adult males performed at the Department of Energy Hanford Site in 2006 and 2007. Potassium concentrations diminish with age, are generally lower in women than in men, and decrease with body mass index (BMI). The average annual effective dose from 40K in the body is 0.149 mSv y−1 for men and 0.123 mSv y−1 women respectively. Averaged over both men and women, the average effective dose per year is 0.136 mSv y−1. Calculated effective doses range from 0.069 to 0.243 mSv y−1 for adult males, and 0.067 to 0.203 mSv y−1 for adult females, a roughly three-fold variation for each gender. The need for dosimetric phantoms with a greater variety of BMI values …
Date: February 13, 2009
Creator: Strom, Daniel J.; Lynch, Timothy P. & Weier, Dennis R.
Object Type: Report
System: The UNT Digital Library
Three-dimensional lithographically-defined organotypic tissue arrays for quantitative analysis of morphogenesis and neoplastic progression (open access)

Three-dimensional lithographically-defined organotypic tissue arrays for quantitative analysis of morphogenesis and neoplastic progression

Here we describe a simple micromolding method to construct three-dimensional arrays of organotypic epithelial tissue structures that approximate in vivo histology. An elastomeric stamp containing an array of posts of defined geometry and spacing is used to mold microscale cavities into the surface of type I collagen gels. Epithelial cells are seeded into the cavities and covered with a second layer of collagen. The cells reorganize into hollow tissues corresponding to the geometry of the cavities. Patterned tissue arrays can be produced in 3-4 h and will undergo morphogenesis over the following one to three days. The protocol can easily be adapted to study a variety of tissues and aspects of normal and neoplastic development.
Date: February 13, 2008
Creator: Nelson, Celeste M.; Inman, Jamie L. & Bissell, Mina J.
Object Type: Article
System: The UNT Digital Library
Integrating automated shading and smart glazings with daylightcontrols (open access)

Integrating automated shading and smart glazings with daylightcontrols

None
Date: February 13, 2004
Creator: Selkowitz, Stephen & Lee, Eleanor
Object Type: Article
System: The UNT Digital Library
Radiation monitoring with CVD Diamonds and PIN Diodes at BaBar (open access)

Radiation monitoring with CVD Diamonds and PIN Diodes at BaBar

The BaBar experiment at the Stanford Linear Accelerator Center has been using two polycrystalline chemical vapor deposition (pCVD) diamonds and 12 silicon PIN diodes for radiation monitoring and protection of the Silicon Vertex Tracker (SVT). We have used the pCVD diamonds for more than 3 years, and the PIN diodes for 7 years. We will describe the SVT and SVT radiation monitoring system as well as the operational difficulties and radiation damage effects on the PIN diodes and pCVD diamonds in a high-energy physics environment.
Date: February 13, 2008
Creator: Bruinsma, M.; Burchat, P.; Curry, S.; Edwards, A.J.; Kagan, H.; Kass, R. et al.
Object Type: Article
System: The UNT Digital Library
Colloid Science of Metal Nanoparticle Catalysts in 2D and 3D Structures. Challenges of Nucleation, Growth, Composition, Particle Shape, Size Control and their Influence on Activity and Selectivity (open access)

Colloid Science of Metal Nanoparticle Catalysts in 2D and 3D Structures. Challenges of Nucleation, Growth, Composition, Particle Shape, Size Control and their Influence on Activity and Selectivity

Recent breakthroughs in synthesis in nanosciences have achieved control of size and shapes of nanoparticles that are relevant for catalyst design. In this article, we review the advance of synthesis of nanoparticles, fabrication of two and three dimensional model catalyst system, characterization, and studies of activity and selectivity. The ability to synthesize monodispersed platinum and rhodium nanoparticles in the 1-10 nm range permitted us to study the influence of composition, structure, and dynamic properties of monodispersed metal nanoparticle on chemical reactivity and selectivity. We review the importance of size and shape of nanoparticles to determine the reaction selectivity in multi-path reactions. The influence of metal-support interaction has been studied by probing the hot electron flows through the metal-oxide interface in catalytic nanodiodes. Novel designs of nanoparticle catalytic systems are discussed.
Date: February 13, 2008
Creator: Somorjai, Gabor A. & Park, Jeong Y.
Object Type: Article
System: The UNT Digital Library
Investigation of the Total Organic Halogen Analytical Method at the Waste Sampling and Characterization Facility (open access)

Investigation of the Total Organic Halogen Analytical Method at the Waste Sampling and Characterization Facility

Total organic halogen (TOX) is used as a parameter to screen groundwater samples at the Hanford Site. Trending is done for each groundwater well, and changes in TOX and other screening parameters can lead to costly changes in the monitoring protocol. The Waste Sampling and Characterization Facility (WSCF) analyzes groundwater samples for TOX using the United States Environmental Protection Agency (EPA) SW-S46 method 9020B (EPA 1996a). Samples from the Soil and Groundwater Remediation Project (SGRP) are submitted to the WSCF for analysis without information regarding the source of the sample; each sample is in essence a ''blind'' sample to the laboratory. Feedback from the SGRP indicated that some of the WSCF-generated TOX data from groundwater wells had a number of outlier values based on the historical trends (Anastos 200Sa). Additionally, analysts at WSCF observed inconsistent TOX results among field sample replicates. Therefore, the WSCF lab performed an investigation of the TOX analysis to determine the cause of the outlier data points. Two causes were found that contributed to generating out-of-trend TOX data: (1) The presence of inorganic chloride in the groundwater samples: at inorganic chloride concentrations greater than about 10 parts per million (ppm), apparent TOX values increase with increasing …
Date: February 13, 2009
Creator: Douglas, J. G.; Meznarich, H. K.; Olsen, J. R.; Ross, G. A. & Stauffer, M.
Object Type: Report
System: The UNT Digital Library
REFINEMENT OF THE NEPHELINE DISCRIMINATOR: RESULTS OF A PHASE I STUDY (open access)

REFINEMENT OF THE NEPHELINE DISCRIMINATOR: RESULTS OF A PHASE I STUDY

The performance of a glass used for immobilization of high-level nuclear waste (HLW) is generally quantified by its resistance to chemical degradation, or durability. The durability of a HLW glass is dependent on its composition. If crystalline phases form within a glass during cooling, the composition of the residual glass network is altered, therefore affecting the durability of the glass. Crystallization of nepheline (NaAlSiO{sub 4}) has been shown to adversely impact the durability of HLW glasses since it removes glass forming species (in this case, Al and Si) from the glass network. The propensity for nepheline crystallization in a HLW glass increases with increasing concentrations of Al{sub 2}O{sub 3} and Na{sub 2}O in the glass. Nepheline crystallization is therefore of concern for processing of HLW at the Defense Waste Processing Facility (DWPF) since the sludge waste streams at the Savannah River Site (SRS) can contain high concentrations of Al{sub 2}O{sub 3} and Na{sub 2}O. Currently, a 'nepheline discriminator' is included as a process control constraint at the DWPF. The nepheline discriminator relates the concentrations of SiO{sub 2}, Na{sub 2}O and Al{sub 2}O{sub 3} (as weight percentages in glass) to a critical value of 0.62. The discriminator defines a boundary line …
Date: February 13, 2008
Creator: Fox, K; James Newell, J; Tommy Edwards, T; David Best, D; Irene Reamer, I & Phyllis Workman, P
Object Type: Report
System: The UNT Digital Library
Time-Resolved FT-IR Spectroscopy of CO Hydrogenation overSupported Ru Catalyst at 700K (open access)

Time-Resolved FT-IR Spectroscopy of CO Hydrogenation overSupported Ru Catalyst at 700K

Time-resolved FT-IR spectra of carbon monoxide hydrogenation over alumina-supported ruthenium were recorded on the millisecond timescale at 703 K using various H{sub 2} concentrations (1 atm total pressure). Adsorbed carbon monoxide was detected along with gas phase products methane (3016 and 1306 cm{sup -1}), water (sharp bands from 1900 - 1300 cm{sup -1}), and carbon dioxide (2348 cm{sup -1}). No other surface species were detected other than adsorbed carbon monoxide. The rate of formation of methane (2.5 {+-} 0.4 s{sup -1}) coincides with the rate of formation of carbon dioxide (3.4 {+-} 0.6 s{sup -1}), and bands due to water are observed to grow in over time. These results establish that methane and carbon dioxide originate from the same intermediate. The adsorbed carbon monoxide band is broad and unsymmetrical with a maximum at 2010 cm{sup -1} in spectra observed at 36 ms that shifts over 3000 ms to 1960 cm{sup -1} due to decreasing amounts of adsorbed carbon monoxide. Kinetic analysis of the adsorbed carbon monoxide band reveals that only a portion of the band can be temporally linked to gas phase products that we observe over the first 1000 ms of catalysis. This result suggests that we are observing …
Date: February 13, 2006
Creator: Wasylenko, Walter & Frei, Heinz
Object Type: Article
System: The UNT Digital Library
JFKengine: A Jacobian and Forward Kinematics Generator (open access)

JFKengine: A Jacobian and Forward Kinematics Generator

During robot path planning and control the equations that describe the robot motions are determined and solved. Historically these expressions were derived analytically off-line. For robots that must adapt to their environment or perform a wide range of tasks, a way is needed to rapidly re-derive these expressions to take into account the robot kinematic changes, such as when a tool is added to the end-effector. The JFKengine software was developed to automatically produce the expressions representing the manipulator arm motion, including the manipulator arm Jacobian and the forward kinematic expressions. Its programming interface can be used in conjunction with robot simulation software or with robot control software. Thus, it helps to automate the process of configuration changes for serial robot manipulators. If the manipulator undergoes a geometric change, such as tool acquisition, then JFKengine can be invoked again from the control or simulation software, passing it parameters for the new arm configuration. This report describes the automated processes that are implemented by JFKengine to derive the kinematic equations and the programming interface by which it is invoked. Then it discusses the tree data structure that was chosen to store the expressions, followed by several examples of portions of expressions …
Date: February 13, 2003
Creator: Fischer, K.N.
Object Type: Report
System: The UNT Digital Library
Morphological tranformation of calcite crystal growth by prismatic "acidic" polypeptide sequences. (open access)

Morphological tranformation of calcite crystal growth by prismatic "acidic" polypeptide sequences.

Many of the interesting mechanical and materials properties of the mollusk shell are thought to stem from the prismatic calcite crystal assemblies within this composite structure. It is now evident that proteins play a major role in the formation of these assemblies. Recently, a superfamily of 7 conserved prismatic layer-specific mollusk shell proteins, Asprich, were sequenced, and the 42 AA C-terminal sequence region of this protein superfamily was found to introduce surface voids or porosities on calcite crystals in vitro. Using AFM imaging techniques, we further investigate the effect that this 42 AA domain (Fragment-2) and its constituent subdomains, DEAD-17 and Acidic-2, have on the morphology and growth kinetics of calcite dislocation hillocks. We find that Fragment-2 adsorbs on terrace surfaces and pins acute steps, accelerates then decelerates the growth of obtuse steps, forms clusters and voids on terrace surfaces, and transforms calcite hillock morphology from a rhombohedral form to a rounded one. These results mirror yet are distinct from some of the earlier findings obtained for nacreous polypeptides. The subdomains Acidic-2 and DEAD-17 were found to accelerate then decelerate obtuse steps and induce oval rather than rounded hillock morphologies. Unlike DEAD-17, Acidic-2 does form clusters on terrace surfaces and …
Date: February 13, 2007
Creator: Kim, I; Giocondi, J L; Orme, C A; Collino, J & Evans, J S
Object Type: Article
System: The UNT Digital Library
Mechanisms of disease: epithelial-mesenchymal transition and back again: does cellular plasticity fuel neoplastic progression? (open access)

Mechanisms of disease: epithelial-mesenchymal transition and back again: does cellular plasticity fuel neoplastic progression?

Epithelial-mesenchymal transition (EMT) is a conversion that facilitates organ morphogenesis and tissue remodeling in physiological processes such as embryonic development and wound healing. A similar phenotypic conversion is also detected in fibrotic diseases and neoplasia, which is associated with disease progression. EMT in cancer epithelial cells often seems to be an incomplete and bi-directional process. In this Review, we discuss the phenomenon of EMT as it pertains to tumor development, focusing on exceptions to the commonly held rule that EMT promotes invasion and metastasis. We also highlight the role of the RAS-controlled signaling mediators, ERK1, ERK2 and PI3-kinase, as microenvironmental responsive regulators of EMT.
Date: February 13, 2008
Creator: Bissell, Mina J; Turley, Eva A.; Veiseh, Mandana; Radisky, Derek C. & Bissell, Mina J.
Object Type: Article
System: The UNT Digital Library
Annual Report Nucelar Energy Research and Development Program Nuclear Energy Research Initiative (open access)

Annual Report Nucelar Energy Research and Development Program Nuclear Energy Research Initiative

NERI Project No.2000-0109 began in August 2000 and has three tasks. The first project year addressed Task 1, namely development of nonlinear prognostication for critical equipment in nuclear power facilities. That work is described in the first year's annual report (ORNLTM-2001/195). The current (second) project year (FY02) addresses Task 2, while the third project year will address Tasks 2-3. This report describes the work for the second project year, spanning August 2001 through August 2002, including status of the tasks, issues and concerns, cost performance, and status summary of tasks. The objective of the second project year's work is a compelling demonstration of the nonlinear prognostication algorithm using much more data. The guidance from Dr. Madeline Feltus (DOE/NE-20) is that it would be preferable to show forewarning of failure for different kinds of nuclear-grade equipment, as opposed to many different failure modes from one piece of equipment. Long-term monitoring of operational utility equipment is possible in principle, but is not practically feasible for the following reason. Time and funding constraints for this project do not allow us to monitor the many machines (thousands) that will be necessary to obtain even a few failure sequences, due to low failure rates (<10{sup …
Date: February 13, 2003
Creator: Hively, LM
Object Type: Report
System: The UNT Digital Library
Prompt gamma activation analysis (PGAA) and short-lived neutron activation analysis (NAA) applied to the characterization of legacy materials (open access)

Prompt gamma activation analysis (PGAA) and short-lived neutron activation analysis (NAA) applied to the characterization of legacy materials

Without quality historical records that provide the composition of legacy materials, the elemental and/or chemical characterization of such materials requires a manual analytical strategy that may expose the analyst to unknown toxicological hazards. In addition, much of the existing legacy inventory also incorporates radioactivity, and, although radiological composition may be determined by various nuclear-analytical methods, most importantly, gamma-spectroscopy, current methods of chemical characterization still require direct sample manipulation, thereby presenting special problems with broad implications for both the analyst and the environment. Alternately, prompt gamma activation analysis (PGAA) provides a'single-shot' in-situ, non-destructive method that provides a complete assay of all major entrained elemental constituents.1-3. Additionally, neutron activation analysis (NAA) using short-lived activation products complements PGAA and is especially useful when NAA activation surpasses the PGAA in elemental sensitivity.
Date: February 13, 2008
Creator: Firestone, Richard B; English, G. A.; Firestone, R. B.; Perry, D. L.; Reijonen, J. P.; Leung, Ka-Ngo et al.
Object Type: Article
System: The UNT Digital Library
Recent Developments in Impact and Application to Future Light Sources (open access)

Recent Developments in Impact and Application to Future Light Sources

This paper discusses two recently added capabilities of the IMPACT suite that are relevant to modeling electron linacs, namely the new 1D coherent synchrotron radiation (CSR) modeling capability and the integrated Green's function (IFG) algorithm for modeling high aspect ratio beams. In addition, we present initial results of application of the enhanced version of IMPACT-Z to high-fidelity modeling of the microbunching instability in a realistic light source lattice.
Date: February 13, 2008
Creator: Pogorelov, I.; Qiang, J.; Ryne, R.; Venturini, M.; Zholents, A. & Warnock, R.
Object Type: Article
System: The UNT Digital Library
The Nevada Test Site as a Lunar Analog Test Area (open access)

The Nevada Test Site as a Lunar Analog Test Area

The Nevada Test Site (NTS) is a large (1,350 square miles) secure site currently operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy and was established in 1951 to provide a venue for testing nuclear weapons. Three areas with a variety of elevation and geological parameters were used for testing, but the largest number of tests was in Yucca Flat. The Yucca Flat area is approximately 5 miles wide and 20 miles long and approximately 460 subsidence craters resulted from testing in this area. The Sedan crater displaced approximately 12 million tons of earth and is the largest of these craters at 1,280 feet across and 320 feet deep. The profiles of Sedan and the other craters offer a wide variety of shapes and depths that are ideally suited for lunar analog testing.
Date: February 13, 2007
Creator: Freid, Sheldon
Object Type: Article
System: The UNT Digital Library
Action-Oriented Benchmarking: Concepts and Tools (open access)

Action-Oriented Benchmarking: Concepts and Tools

Most energy benchmarking tools provide static feedback on how one building compares to a larger set of loosely similar buildings, without providing information at the end-use level or on what can be done to reduce consumption, cost, or emissions. In this article--Part 1 of a two-part series--we describe an 'action-oriented benchmarking' approach, which extends whole-building energy benchmarking to include analysis of system and component energy use metrics and features. Action-oriented benchmarking thereby allows users to generate more meaningful metrics and to identify, screen and prioritize potential efficiency improvements. This opportunity assessment process can then be used to inform and optimize a full-scale audit or commissioning process. We introduce a new web-based action-oriented benchmarking system and associated software tool-EnergyIQ. The benchmarking methods, visualizations, and user interface design are informed by an end-user needs assessment survey and best-practice guidelines from ASHRAE.
Date: February 13, 2008
Creator: Commission, California Energy; Mathew, Paul; Mills, Evan; Mathew, Paul; Piette, Mary Ann; Bourassa, Norman et al.
Object Type: Article
System: The UNT Digital Library
Evaluation of optical imaging and spectroscopy approaches for cardiac tissue depth assessment (open access)

Evaluation of optical imaging and spectroscopy approaches for cardiac tissue depth assessment

NIR light scattering from ex vivo porcine cardiac tissue was investigated to understand how imaging or point measurement approaches may assist development of methods for tissue depth assessment. Our results indicate an increase of average image intensity as thickness increases up to approximately 2 mm. In a dual fiber spectroscopy configuration, sensitivity up to approximately 3 mm with an increase to 6 mm when spectral ratio between selected wavelengths was obtained. Preliminary Monte Carlo results provided reasonable fit to the experimental data.
Date: February 13, 2008
Creator: Lin, B; Matthews, D; Chernomordik, V; Gandjbakhche, A; Lane, S & Demos, S G
Object Type: Article
System: The UNT Digital Library
Constraining Cosmic Evolution of Type Ia Supernovae (open access)

Constraining Cosmic Evolution of Type Ia Supernovae

We present the first large-scale effort of creating composite spectra of high-redshift type Ia supernovae (SNe Ia) and comparing them to low-redshift counterparts. Through the ESSENCE project, we have obtained 107 spectra of 88 high-redshift SNe Ia with excellent light-curve information. In addition, we have obtained 397 spectra of low-redshift SNe through a multiple-decade effort at Lick and Keck Observatories, and we have used 45 ultraviolet spectra obtained by HST/IUE. The low-redshift spectra act as a control sample when comparing to the ESSENCE spectra. In all instances, the ESSENCE and Lick composite spectra appear very similar. The addition of galaxy light to the Lick composite spectra allows a nearly perfect match of the overall spectral-energy distribution with the ESSENCE composite spectra, indicating that the high-redshift SNe are more contaminated with host-galaxy light than their low-redshift counterparts. This is caused by observing objects at all redshifts with similar slit widths, which corresponds to different projected distances. After correcting for the galaxy-light contamination, subtle differences in the spectra remain. We have estimated the systematic errors when using current spectral templates for K-corrections to be {approx}0.02 mag. The variance in the composite spectra give an estimate of the intrinsic variance in low-redshift maximum-light …
Date: February 13, 2008
Creator: Foley, Ryan J.; Filippenko, Alexei V.; Aguilera, C.; Becker, A. C.; Blondin, S.; Challis, P. et al.
Object Type: Article
System: The UNT Digital Library
Novel Methods for Binding Disparate Materials (open access)

Novel Methods for Binding Disparate Materials

This project was intended to advance the science of surface bonding in order to provide the functionality demanded by target fabrication requirements, as well as similar needs in other fields of importance to LLNL. We have developed and demonstrated a very powerful capability, i.e. 'single molecule force spectroscopy', that allows the strength of individual chemical bonds to be measured. This project focused on long chain molecules that are covalently bound to surfaces on one end and have complementary reactive groups that have the potential for bridging between surfaces. In biological systems, long chain tethers provide the mechanism for adhesion between dissimilar surfaces, e.g. bacteria adhesion to cells, and were found useful for developing the methodology. Polymer tethers offer the means to bridge across finite surface roughness and have the potential of forming thin, well-characterized bonds on a variety of surfaces.
Date: February 13, 2006
Creator: McElfresh, M W; Rudd, R E; Ratto, T V & Langry, K C
Object Type: Report
System: The UNT Digital Library
Microaspiration for high-pressure freezing: a new method for ultrastructural preservation of fragile and sparse tissues for TEM and electron tomography (open access)

Microaspiration for high-pressure freezing: a new method for ultrastructural preservation of fragile and sparse tissues for TEM and electron tomography

High-pressure freezing is the preferred method to prepare thick biological specimens for ultrastructural studies. However, the advantages obtained by this method often prove unattainable for samples that are difficult to handle during the freezing and substitution protocols. Delicate and sparse samples are difficult to manipulate and maintain intact throughout the sequence of freezing, infiltration, embedding, and final orientation for sectioning and subsequent TEM imaging. An established approach to surmount these difficulties is the use of cellulose microdialysis tubing to transport the sample. With an inner diameter of 200 micrometers, the tubing protects small and fragile samples within the thickness constraints of high-pressure freezing, and the tube ends can be sealed to avoid loss of sample. Importantly, the transparency of the tubing allows optical study of the specimen at different steps in the process. Here, we describe the use of a micromanipulator and microinjection apparatus to handle and position delicate specimens within the tubing. We report two biologically significant examples that benefit from this approach, 3D cultures of mammary epithelial cells and cochlear outer hair cells. We illustrate the potential for correlative light and electron microscopy as well as electron tomography.
Date: February 13, 2008
Creator: Auer, Manfred; Triffo, W. J.; Palsdottir, H.; McDonald, K. L.; Inman, J. L.; Bissell, M. J. et al.
Object Type: Article
System: The UNT Digital Library
Hosing Instability in the Blow-Out Regime for Plasma-Wakefield Acceleration (open access)

Hosing Instability in the Blow-Out Regime for Plasma-Wakefield Acceleration

The electron hosing instability in the blow-out regime of plasma-wakefield acceleration is investigated using a linear perturbation theory about the electron blow-out trajectory in Lu et al. [in Phys. Rev. Lett. 96, 165002 (2006)]. The growth of the instability is found to be affected by the beam parameters unlike in the standard theory Whittum et al. [Phys. Rev. Lett. 67, 991 (1991)] which is strictly valid for preformed channels. Particle-in-cell simulations agree with this new theory, which predicts less hosing growth than found by the hosing theory of Whittum et al.
Date: February 13, 2008
Creator: Huang, C.; Lu, W.; Zhou, M.; Clayton, C. E.; Joshi, C.; Mori, W.B. et al.
Object Type: Article
System: The UNT Digital Library
System-level line-edge roughness limits in extreme ultraviolet lithography (open access)

System-level line-edge roughness limits in extreme ultraviolet lithography

As critical dimensions shrink, line edge and width roughness (LER and LWR) become of increasing concern. Traditionally LER is viewed as a resist-limited effect; however, as critical dimensions shrink and LER requirements become proportionally more stringent, system-level effects begin to play an important role. Recent advanced EUV resist testing results have demonstrated lower bounds on achievable LER at the level of approximately 2 to 3 nm. Here we use modeling to demonstrate that a significant portion of this low bound may in fact be do to system-level effects and in particular the mask. Of concern are both LER on the mask as well as roughness of the multilayer reflector. Modeling also shows roughness (flare) in the projection optics not to be of concern.
Date: February 13, 2008
Creator: Jones, Juanita; Naulleau, Patrick P; Niakoula, Dimitra & Zhang, Guojing
Object Type: Article
System: The UNT Digital Library
Protein Classification Based on Analysis of Local Sequence-Structure Correspondence (open access)

Protein Classification Based on Analysis of Local Sequence-Structure Correspondence

None
Date: February 13, 2006
Creator: Zemla, A T
Object Type: Report
System: The UNT Digital Library
Diffusion through Carbon Nanotube Semipermeable membranes (open access)

Diffusion through Carbon Nanotube Semipermeable membranes

The goal of this project is to measure transport through CNTs and study effects of confinement at molecular scale. This work is motivated by several simulation papers in high profile journals that predict significantly higher transport rates of gases and liquids through carbon nanotubes as compared with similarly-sized nanomaterials (e.g. zeolites). The predictions are based on the effects of confinement, atomically smooth pore walls and high pore density. Our work will provide the first measurements that would compare to and hopefully validate the simulations. Gas flux is predicted to be >1000X greater for SWNTs versus zeolitesi. A high flux of 6-30 H2O/NT/ns {approx} 8-40 L/min for a 1cm{sup 2} membrane is also predicted. Neutron diffraction measurements indicate existence of a 1D water chain within a cylindrical ice sheet inside carbon nanotubes, which is consistent with the predictions of the simulation. The enabling experimental platform that we are developing is a semipermeable membrane made out of vertically aligned carbon nanotubes with gaps between nanotubes filled so that the transport occurs through the nanotubes. The major challenges of this project included: (1) Growth of CNTs in the suitable vertically aligned configuration, especially the single wall carbon nanotubes; (2) Development of a process …
Date: February 13, 2006
Creator: Bakajin, O
Object Type: Report
System: The UNT Digital Library