Resource Type

Impact of Small Chemistry Variations in Plate and Weld Filler Metal on the Corrosion Performance of Ni-Cr-Mo Alloys (open access)

Impact of Small Chemistry Variations in Plate and Weld Filler Metal on the Corrosion Performance of Ni-Cr-Mo Alloys

The ASTM standard B 575 provides the requirements for the chemical composition of Nickel-Chromium-Molybdenum (Ni-Cr-Mo) alloys such as Alloy 22 (N06022) and Alloy 686 (N06686). The compositions of each element are given in a range. For example, the content of Mo is specified from 12.5 to 14.5 weight percent for Alloy 22 and from 15.0 to 17.0 weight percent for Alloy 686. It was important to determine how the corrosion rate of welded plates of Alloy 22 using Alloy 686 weld filler metal would change if heats of these alloys were prepared using several variations in the composition of the elements even though still in the range specified in B 575. Seven heats of plate were welded with seven heats of wire. Immersion corrosion tests were conducted in a boiling solution of sulfuric acid plus ferric sulfate (ASTM G 28 A) using both as-welded (ASW) coupons and solution heat-treated (SHT) coupons. Results show that the corrosion rate was not affected by the chemistry of the materials in the range specified in the standard B 575.
Date: February 5, 2006
Creator: Fix, D V & Rebak, R B
System: The UNT Digital Library
Long-Term Corrosion Behavior of Alloy 22 in 5 M CaCl2 at 120?C (open access)

Long-Term Corrosion Behavior of Alloy 22 in 5 M CaCl2 at 120?C

In conditions where tight crevices exist in hot chloride containing solutions Alloy 22 may suffer crevice corrosion. The occurrence (or not) of crevice corrosion in a given environment (e.g. salt concentration and temperature), is governed by the values of the critical potential (E{sub crit}) for crevice corrosion and the corrosion potential (E{sub corr}). This paper discusses the evolution of E{sub corr} and corrosion rate (CR) of creviced Alloy 22 specimens in 5 M calcium chloride (CaCl{sub 2}) at 120 C. Tested specimens included non-creviced rods and multiple creviced assemblies (MCA) both non-welded (wrought) and welded. Results show that Alloy 22 suffers crevice corrosion under the open circuit conditions in the aerated hot CaCl{sub 2} brine. However, after more than a year immersion the propagation of crevice corrosion was not significant. The general corrosion rate decreased or remained unchanged as the immersion time increased. For rods and MCA specimens, the corrosion rate was lower than 100 nm/year after more than a year immersion time.
Date: February 5, 2006
Creator: Estill, J. C.; Hust, G. A.; Evans, K. J.; Stuart, M. L. & Rebak, R. B.
System: The UNT Digital Library
Effect of Chemistry Variations in Plate and Weld Filler Metal on the Corrosion Performance of Ni-Cr-Mo Alloys (open access)

Effect of Chemistry Variations in Plate and Weld Filler Metal on the Corrosion Performance of Ni-Cr-Mo Alloys

The ASTM standard B 575 provides the requirements for the chemical composition of Nickel-Chromium-Molybdenum (Ni-Cr-Mo) alloys such as Alloy 22 (N06022) and Alloy 686 (N06686). The compositions of each element are given in a range. For example, the content of Mo is specified from 12.5 to 14.5 weight percent for Alloy 22 and from 15.0 to 17.0 weight percent for Alloy 686. It was important to determine how the corrosion rate of welded plates of Alloy 22 using Alloy 686 weld filler metal would change if heats of these alloys were prepared using several variations in the composition of the elements even though still in the range specified in B 575. All the material used in this report were especially prepared at Allegheny Ludlum Co. Seven heats of plate were welded with seven heats of wire. Immersion corrosion tests were conducted in a boiling solution of sulfuric acid plus ferric sulfate (ASTM G 28 A) using both as-welded (ASW) coupons and solution heat-treated (SHT) coupons. Results show that the corrosion rate was not affected by the chemistry of the materials in the range of the standards.
Date: February 5, 2006
Creator: Fix, D V & Rebak, R B
System: The UNT Digital Library
Electrochemical Testing of Gas Tungsten Arc Welded and Reduced Pressure Electron Beam Welded Alloy 22 (open access)

Electrochemical Testing of Gas Tungsten Arc Welded and Reduced Pressure Electron Beam Welded Alloy 22

Alloy 22 (N06022) is the material selected for the fabrication of the outer shell of the nuclear waste containers for the Yucca Mountain high-level nuclear waste repository site. A key technical issue in the waste package program has been the integrity of the container weld joints. The currently selected welding process for fabricating and sealing the containers is the traditional gas tungsten arc welding (GTAW) or TIG method. An appealing faster alternative technique is reduced pressure electron beam (RPEB) welding. It was of interest to compare the corrosion properties of specimens prepared using both types of welding techniques. Standard electrochemical tests were carried on GTAW and RPEB welds as well as on base metal (non-welded) to determine their relative corrosion behavior in simulated concentrated water (SCW) at 90 C (alkaline), 1 M HCl at 60 C (acidic) and 1 M NaCl at 90 C (neutral) solutions. Results show that for all practical purposes, the three tested materials had the same electrochemical behavior in the three tested electrolytes.
Date: February 5, 2006
Creator: Day, S. D.; Wong, F. G.; Gordon, S. R.; Wong, L. L. & Rebak, R. B.
System: The UNT Digital Library
Comparative Corrosion Behavior of Two Palladium Containing Titanium Alloys (open access)

Comparative Corrosion Behavior of Two Palladium Containing Titanium Alloys

The ASTM standard B 265 provides the requirements for the chemical composition of titanium (Ti) alloys. It is planned to use corrosion resistant and high strength titanium alloys to fabricate the drip shield at the proposed Yucca Mountain Repository. Titanium grade (Gr) 7 (R52400) and other Ti alloys are currently being characterized for this application. Ti Gr 7 contains 0.15% Palladium (Pd) to increase its corrosion performance. In this article we report results on the comparative short term corrosion behavior of Ti Gr 7 and a Ruthenium (Ru) containing alloy (Ti Gr 33). Ti Gr 33 also contains a small amount of Pd. Limited electrochemical testing such as polarization resistance and cyclic potentiodynamic curves showed that both alloys have a similar corrosion behavior in the tested environments.
Date: February 5, 2006
Creator: Lian, T; Yashiki, T; Nakayama, T; Nakanishi, T & Rebak, R B
System: The UNT Digital Library