Inversion of Synthetic Aperture Radar Interferograms for Sources of Production-Related Subsidence at the Dixie Valley Geothermal Field (open access)

Inversion of Synthetic Aperture Radar Interferograms for Sources of Production-Related Subsidence at the Dixie Valley Geothermal Field

We used synthetic aperture radar interferograms to image ground subsidence that occurred over the Dixie Valley geothermal field during different time intervals between 1992 and 1997. Linear elastic inversion of the subsidence that occurred between April, 1996 and March, 1997 revealed that the dominant sources of deformation during this time period were large changes in fluid volumes at shallow depths within the valley fill above the reservoir. The distributions of subsidence and subsurface volume change support a model in which reduction in pressure and volume of hot water discharging into the valley fill from localized upflow along the Stillwater range frontal fault is caused by drawdown within the upflow zone resulting from geothermal production. Our results also suggest that an additional source of fluid volume reduction in the shallow valley fill might be similar drawdown within piedmont fault zones. Shallow groundwater flow in the vicinity of the field appears to be controlled on the NW by a mapped fault and to the SW by a lineament of as yet unknown origin.
Date: February 7, 2003
Creator: Foxall, W & Vasco, D
System: The UNT Digital Library
A Posteriori Error Estimators for Solutions to the Time Domain Maxwell Equations (open access)

A Posteriori Error Estimators for Solutions to the Time Domain Maxwell Equations

None
Date: February 7, 2005
Creator: Stowell, M. L. & White, D. A.
System: The UNT Digital Library
Phenomenology treatment of magnetohydrodynamic turbulence with non-equipartition and anisotropy (open access)

Phenomenology treatment of magnetohydrodynamic turbulence with non-equipartition and anisotropy

Magnetohydrodynamics (MHD) turbulence theory, often employed satisfactorily in astrophysical applications, has often focused on parameter ranges that imply nearly equal values of kinetic and magnetic energies and length scales. However, MHD flow may have disparity magnetic Prandtl number, dissimilar kinetic and magnetic Reynolds number, different kinetic and magnetic outer length scales, and strong anisotropy. Here a phenomenology for such ''non-equipartitioned'' MHD flow is discussed. Two conditions are proposed for a MHD flow to transition to strong turbulent flow, extensions of (1) Taylor's constant flux in an inertial range, and (2) Kolmogorov's scale separation between the large and small scale boundaries of an inertial range. For this analysis, the detailed information on turbulence structure is not needed. These two conditions for MHD transition are expected to provide consistent predictions and should be applicable to anisotropic MHD flows, after the length scales are replaced by their corresponding perpendicular components. Second, it is stressed that the dynamics and anisotropy of MHD fluctuations is controlled by the relative strength between the straining effects between eddies of similar size and the sweeping action by the large-eddies, or propagation effect of the large-scale magnetic fields, on the small scales, and analysis of this balance in principle …
Date: February 7, 2005
Creator: Zhou, Y & Matthaeus, W H
System: The UNT Digital Library
Defining Electron Backscatter Diffraction Resolution (open access)

Defining Electron Backscatter Diffraction Resolution

Automated electron backscatter diffraction (EBSD) mapping systems have existed for more than 10 years [1,2], and due to their versatility in characterizing multiple aspects of microstructure, they have become an important tool in microscale crystallographic studies. Their increasingly widespread use however raises questions about their accuracy in both determining crystallographic orientations, as well as ensuring that the orientation information is spatially correct. The issue of orientation accuracy (as defined by angular resolution) has been addressed previously [3-5]. While the resolution of EBSD systems is typically quoted to be on the order of 1{sup o}, it has been shown that by increasing the pattern quality via acquisition parameter adjustment, the angular resolution can be improved to sub-degree levels. Ultimately, the resolution is dependent on how it is identified. In some cases it can be identified as the orientation relative to a known absolute, in others as the misorientation between nearest neighbor points in a scan. Naturally, the resulting values can be significantly different. Therefore, a consistent and universal definition of resolution that can be applied to characterize any EBSD system is necessary, and is the focus of the current study. In this work, a Phillips (FEI) XL-40 FEGSEM coupled to a …
Date: February 7, 2005
Creator: El-Dasher, B S & Rollett, A D
System: The UNT Digital Library
Identifying Synonymous Regulatory Elements in Vertebrate Genomes (open access)

Identifying Synonymous Regulatory Elements in Vertebrate Genomes

Synonymous gene regulation, defined as driving shared temporal and/or spatial expression of groups of genes, is likely predicated on genomic elements that contain similar modules of certain transcription factor binding sites (TFBS). We have developed a method to scan vertebrate genomes for evolutionary conserved modules of TFBS in a predefined configuration, and created a tool, named SynoR that identify synonymous regulatory elements (SREs) in vertebrate genomes. SynoR performs de novo identification of SREs utilizing known patterns of TFBS in active regulatory elements (REs) as seeds for genome scans. Layers of multiple-species conservation allow the use of differential phylogenetic sequence conservation filters in the search of SREs and the results are displayed as to provide an extensive annotation of genes containing detected REs. Gene Ontology categories are utilized to further functionally classify the identified genes, and integrated GNF Expression Atlas 2 data allow the cataloging of tissue-specificities of the predicted SREs. We illustrate how this new tool can be used to establish a linkage between human diseases and noncoding genomic content. SynoR is publicly available at http://synor.dcode.org.
Date: February 7, 2005
Creator: Ovcharenko, I. & Nobrega, M. A.
System: The UNT Digital Library
Bonding in the Superionic Phase of Water (open access)

Bonding in the Superionic Phase of Water

The predicted superionic phase of water is investigated via ab initio molecular dynamics at densities of 2.0-3.0 g/cc (34-115 GPa) along the 2000K isotherm. They find that extremely rapid (superionic) diffusion of protons occurs in a fluid phase at pressures between 34 and 58 GPa. A transition to a stable body-centered cubic (bcc) O lattice with superionic proton conductivity is observed between 70 and 75 GPa, a much higher pressure than suggested in prior work. They find that all molecular species at pressures greater than 75 GPa are too short lived to be classified as bound states. Up to 95 GPa, they find a solid superionic phase characterization by covalent O-H bonding. Above 95 GPa, a transient network phase is found characterized by symmetric O-H hydrogen bonding with nearly 50% covalent character. In addition, they describe a new metastable superionic phase with quenched O disorder.
Date: February 7, 2005
Creator: Goldman, N; Fried, L E; Kuo, I W & Mundy, C J
System: The UNT Digital Library
Enabling Interoperation of High Performance, Scientific Computing Applications: Modeling Scientific Data with the Sets & Fields (SAF) Modeling System (open access)

Enabling Interoperation of High Performance, Scientific Computing Applications: Modeling Scientific Data with the Sets & Fields (SAF) Modeling System

This paper describes the Sets and Fields (SAF) scientific data modeling system. It is a revolutionary approach to interoperation of high performance, scientific computing applications based upon rigorous, math-oriented data modeling principles. Previous technologies have required all applications to use the same data structures and/or meshes to represent scientific data or lead to an ever expanding set of incrementally different data structures and/or meshes. SAF addresses this problem by providing a small set of mathematical building blocks--sets, relations and fields--out of which a wide variety of scientific data can be characterized. Applications literally model their data by assembling these building blocks. A short historical perspective, a conceptual model and an overview of SAF along with preliminary results from its use in a few ASCI codes are discussed.
Date: February 7, 2001
Creator: Miller, M C; Reus, J F; Matzke, R P; Arrighi, W J; Schoof, L A; Hitt, R T et al.
System: The UNT Digital Library
Fluidized Bed Steam Reforming (FBSR) of High Level Waste (HLW) Organic and Nitrate Destruction Prior to Vitrification: Crucible Scale to Engineering Scale Demonstrations and Non-Radioactive to Radioactive Demonstrations (open access)

Fluidized Bed Steam Reforming (FBSR) of High Level Waste (HLW) Organic and Nitrate Destruction Prior to Vitrification: Crucible Scale to Engineering Scale Demonstrations and Non-Radioactive to Radioactive Demonstrations

Over a decade ago, an in-tank precipitation process to remove Cs-137 from radioactive high level waste (HLW) supernates was demonstrated at the Savannah River Site (SRS). The full scale demonstration with actual HLW was performed in SRS Tank 48 (T48). Sodium tetraphenylborate (NaTPB) was added to enable Cs-137 extraction as CsTPB. The CsTPB, an organic, and its decomposition products proved to be problematic for subsequent processing of the Cs-137 precipitate in the SRS HLW vitrification facility for ultimate disposal in a HLW repository. Fluidized Bed Steam Reforming (FBSR) is being considered as a technology for destroying the organics and nitrates in the T48 waste to render it compatible with subsequent HLW vitrification. During FBSR processing the T48 waste is converted into organic-free and nitrate-free carbonate-based minerals which are water soluble. The soluble nature of the carbonate-based minerals allows them to be dissolved and pumped to the vitrification facility or returned to the tank farm for future vitrification. The initial use of the FBSR process for T48 waste was demonstrated with simulated waste in 2003 at the Savannah River National Laboratory (SRNL) using a specially designed sealed crucible test that reproduces the FBSR pyrolysis reactions, i.e. carbonate formation, organic and nitrate …
Date: February 7, 2009
Creator: Jantzen, Carol M.; Williams, M. R.; Daniel, W. E.; Burket, P. R. & Crawford, C. L.
System: The UNT Digital Library
String-Corrected Black Holes (open access)

String-Corrected Black Holes

We investigate the geometry of four dimensional black hole solutions in the presence of stringy higher curvature corrections to the low energy effective action. For certain supersymmetric two charge black holes these corrections drastically alter the causal structure of the solution, converting seemingly pathological null singularities into timelike singularities hidden behind a finite area horizon. We establish, analytically and numerically, that the string-corrected two-charge black hole metric has the same Penrose diagram as the extremal four-charge black hole. The higher derivative terms lead to another dramatic effect -- the gravitational force exerted by a black hole on an inertial observer is no longer purely attractive! The magnitude of this effect is related to the size of the compactification manifold.
Date: February 7, 2005
Creator: Hubeny, Veronika; Maloney, Alexander & Rangamani, Mukund
System: The UNT Digital Library
Sensitivity study of CO2 storage capacity in brine aquifers withclosed boundaries: Dependence on hydrogeologic properties (open access)

Sensitivity study of CO2 storage capacity in brine aquifers withclosed boundaries: Dependence on hydrogeologic properties

In large-scale geologic storage projects, the injected volumes of CO{sub 2} will displace huge volumes of native brine. If the designated storage formation is a closed system, e.g., a geologic unit that is compartmentalized by (almost) impermeable sealing units and/or sealing faults, the native brine cannot (easily) escape from the target reservoir. Thus the amount of supercritical CO{sub 2} that can be stored in such a system depends ultimately on how much pore space can be made available for the added fluid owing to the compressibility of the pore structure and the fluids. To evaluate storage capacity in such closed systems, we have conducted a modeling study simulating CO{sub 2} injection into idealized deep saline aquifers that have no (or limited) interaction with overlying, underlying, and/or adjacent units. Our focus is to evaluate the storage capacity of closed systems as a function of various reservoir parameters, hydraulic properties, compressibilities, depth, boundaries, etc. Accounting for multi-phase flow effects including dissolution of CO{sub 2} in numerical simulations, the goal is to develop simple analytical expressions that provide estimates for storage capacity and pressure buildup in such closed systems.
Date: February 7, 2007
Creator: Zhou, Q.; Birkholzer, J.; Rutqvist, J. & Tsang, C-F.
System: The UNT Digital Library
Geometrical Properties of a "Snow-Flake" Divertor (open access)

Geometrical Properties of a "Snow-Flake" Divertor

Using a simple set of poloidal field coils, one can reach the situation where the null of the poloidal magnetic field in the divertor region is of a second order, not of the first order as in the usual X-point divertor. Then, the separatrix in the vicinity of the null-point splits the poloidal plane not into four sectors, but into six sectors, making the whole structure looking like a snow-flake (whence a name, [1]). This arrangement allows one to spread the heat load over much broader area than in the case of a standard divertor. A disadvantage of this configuration is in that it is topologically unstable, and, with the current in the plasma varying with time, it would switch either to the standard X-point mode, or to the mode with two X-points close to each other. To avoid this problem, it is suggested to have a current in the divertor coils by roughly 5% higher than in an 'optimum' regime (the one where a snow-flake separatrix is formed). In this mode, the configuration becomes stable and can be controlled by varying the current in the divertor coils in concert with the plasma current; on the other hand, a strong …
Date: February 7, 2007
Creator: Ryutov, D. D.
System: The UNT Digital Library
Disruption of Maternal DNA Repair Increases Sperm-DerivedChromosomal Aberrations (open access)

Disruption of Maternal DNA Repair Increases Sperm-DerivedChromosomal Aberrations

The final weeks of male germ cell differentiation occur in aDNA repair-deficient environment and normal development depends on theability of the egg to repair DNA damage in the fertilizing sperm. Geneticdisruption of maternal DNA double-strand break repair pathways in micesignificantly increased the frequency of zygotes with chromosomalstructural aberrations after paternal exposure to ionizing radiation.These findings demonstrate that radiation-induced DNA sperm lesions arerepaired after fertilization by maternal factors and suggest that geneticvariation in maternal DNA repair can modulate the risk of early pregnancylosses and of children with chromosomal aberrations of paternalorigin.
Date: February 7, 2007
Creator: Marchetti, Francesco; Essers, Jeroun; Kanaar, Roland & Wyrobek,Andrew J.
System: The UNT Digital Library
The Utilization of Spin Polarized Photoelectron Spectroscopy as a Probe of Electron Correlation with an Ultimate Goal of Pu (open access)

The Utilization of Spin Polarized Photoelectron Spectroscopy as a Probe of Electron Correlation with an Ultimate Goal of Pu

We are developing the technique of spin-polarized photoelectron spectroscopy as a probe of electron correlation with the ultimate goal of resolving the Pu electronic structure controversy. Over the last several years, we have demonstrated the utility of spin polarized photoelectron spectroscopy for determining the fine details of the electronic structure in complex systems such as those shown in this report.
Date: February 7, 2008
Creator: Tobin, J G; Yu, S W; Chung, B W; Morton, S A; Komesu, T & Waddill, G D
System: The UNT Digital Library
SPECTRAL IDENTIFICATION OF AN ANCIENT SUPERNOVA USING LIGHT ECHOES IN THE LMC (open access)

SPECTRAL IDENTIFICATION OF AN ANCIENT SUPERNOVA USING LIGHT ECHOES IN THE LMC

We report the successful identification of the type of the supernova responsible for the supernova remnant SNR 0509-675 in the Large Magellanic Cloud (LMC) using Gemini spectra of surrounding light echoes. The ability to classify outbursts associated with centuries-old remnants provides a new window into several aspects of supernova research and is likely to be successful in providing new constraints on additional LMC supernovae as well as their historical counterparts in the Milky Way Galaxy (MWG). The combined spectrum of echo light from SNR 0509-675 shows broad emission and absorption lines consistent with a supernova (SN) spectrum. We create a spectral library consisting of 26 SNe Ia and 6 SN Ib/c that are time-integrated, dust-scattered by LMC dust, and reddened by the LMC and MWG. We fit these SN templates to the observed light echo spectrum using {chi}{sup 2} minimization as well as correlation techniques, and we find that overluminous 91T-like SNe Ia with {Delta}m{sub 15} < 0.9 match the observed spectrum best.
Date: February 7, 2008
Creator: Rest, A.; Matheson, T.; Blondin, S.; Bergmann, M.; Welch, D. L.; Suntzeff, N. B. et al.
System: The UNT Digital Library
Metal-insulator transition by isovalent anion substitution in Ga1-xMnxAs: Implications to ferromagnetism (open access)

Metal-insulator transition by isovalent anion substitution in Ga1-xMnxAs: Implications to ferromagnetism

We have investigated the effect of partial isovalent anion substitution in Ga1-xMnxAs on electrical transport and ferromagnetism. Substitution of only 2.4percent of As by P induces a metal-insulator transition at a constant Mn doping of x=0.046 while the replacement of 0.4 percent As with N results in the crossover from metal to insulator for x=0.037. This remarkable behavior is consistent with a scenario in which holes located within an impurity band are scattered by alloy disorder in the anion sublattice. The shorter mean free path of holes, which mediate ferromagnetism, reduces the Curie temperature TC from 113 K to 60 K (100 K to 65 K) upon the introduction of 3.1 percent P (1percent N) into the As sublattice.
Date: February 7, 2008
Creator: Stone, P. R.; Alberi, K.; Tardif, S. K. Z.; Beeman, J. W.; Yu, K. M.; Walukiewicz, W. et al.
System: The UNT Digital Library
A Study of the Dielectric Properties of Dry and Saturated Green River Oil Shale (open access)

A Study of the Dielectric Properties of Dry and Saturated Green River Oil Shale

We measured dielectric permittivity of dry and fluid-saturated Green River oil shale samples over a frequency range of 1 MHz to 1.8 GHz. Dry sample measurements were carried out between room temperature and 146 C, saturated sample measurements were carried out at room temperature. Samples obtained from the Green River formation of Wyoming and from the Anvil Points Mine in Colorado were cored both parallel and perpendicular to layering. The samples, which all had organic richness in the range of 10-45 gal/ton, showed small variations between samples and a relatively small level of anisotropy of the dielectric properties when dry. The real and imaginary part of the relative dielectric permittivity of dry rock was nearly constant over the frequency range observed, with low values for the imaginary part (loss factor). Saturation with de-ionized water and brine greatly increased the values of the real and imaginary parts of the relative permittivity, especially at the lower frequencies. Temperature effects were relatively small, with initial increases in permittivity to about 60 C, followed by slight decreases in permittivity that diminished as temperature increased. Implications of these observations for the in situ electromagnetic, or radio frequency (RF) heating of oil shale to produce oil …
Date: February 7, 2007
Creator: Sweeney, J.; Roberts, J. & Harben, P.
System: The UNT Digital Library
A 3D Model for Ion Beam Formation and Transport Simulation (open access)

A 3D Model for Ion Beam Formation and Transport Simulation

In this paper, we present a three-dimensional model forself-consistently modeling ion beam formation from plasma ion sources andtransporting in low energy beam transport systems. A multi-sectionoverlapped computational domain has been used to break the originaltransport system into a number of weakly coupled subsystems. Within eachsubsystem, macro-particle tracking is used to obtain the charge densitydistribution in this subdomain. The three-dimensional Poisson equation issolved within the subdomain after each particle tracking to obtain theself-consistent space-charge forces and the particle tracking is repeateduntil the solution converges. Two new Poisson solvers based on acombination of the spectral method and the finite difference multigridmethod have been developed to solve the Poisson equation in cylindricalcoordinates for the straight beam transport section and in Frenet-Serretcoordinates for the bending magnet section. This model can have importantapplication in design and optimization of the low energy beam line opticsof the proposed Rare Isotope Accelerator (RIA) front end.
Date: February 7, 2006
Creator: Qiang, J.; Todd, D. & Leitner, D.
System: The UNT Digital Library
Soft X-ray Studies of Pu Electronic Structure: Past Lessons and Future Directions (open access)

Soft X-ray Studies of Pu Electronic Structure: Past Lessons and Future Directions

Photoelectron Spectroscopy (PES) and X-ray Absorption Spectroscopy (XAS, Figure 1) have contributed greatly to our improved understanding of Pu electronic structure. From these and related measurements, the following has been determined: (1) The Pu 5f spin-orbit splitting is large; (2) The number of Pu5f electrons is near 5; and (3) The Pu 5f spin-orbit splitting effect dominates 5f itineracy. Significant questions remain concerning the nature of Pu electronic structure. Perhaps the missing piece of the puzzle is the direct experimental determination of the unoccupied electronic structure using high energy inverse photoelectron spectroscopy or Bremstrahlung Isochromat Spectroscopy (BIS). Past BIS studies of Th and U indicate the feasibility and utility of Pu studies.
Date: February 7, 2008
Creator: Tobin, J. G. & Yu, S. W.
System: The UNT Digital Library
Experiments with planar inductive ion source meant for creation ofH+ Beams (open access)

Experiments with planar inductive ion source meant for creation ofH+ Beams

In this article the effect of different engineering parameters of an rf-driven ion sources with external spiral antenna and quartz disk rf-window are studied. Paper consists of three main topics: The effect of source geometry on the operation gas pressure, the effect of source materials and magnetic confinement on extracted current density and ion species and the effect of different antenna geometries on the extracted current density. The operation gas pressure as a function of the plasma chamber diameter, was studied. This was done with three cylindrical plasma chambers with different inner diameters. The chamber materials were studied using two materials, aluminum and alumina (AlO{sub 2}). The removable 14 magnet multicusp confinement arrangement enabled us to compare the effects of the two wall materials with and without the magnetic confinement. Highest proton fraction of {approx} 8% at 2000 W of rf-power and at pressure of 1.3 Pa was measured using AlO{sub 2} plasma chamber and no multicusp confinement. For all the compared ion sources at 1000W of rf-power, source with multicusp confinement and AlO2 plasma chamber yields highest current density of 82.7 mA/cm{sup 2} at operation pressure of 4 Pa. From the same source highest measured current density of 143 …
Date: February 7, 2007
Creator: Vainionpaa, J. H.; Kalvas, T.; Hahto, S. K. & Reijonen, J.
System: The UNT Digital Library
Accurate Astrometry and Photometry of Saturated and Coronagraphic Point Spread Functions (open access)

Accurate Astrometry and Photometry of Saturated and Coronagraphic Point Spread Functions

For ground-based adaptive optics point source imaging, differential atmospheric refraction and flexure introduce a small drift of the point spread function (PSF) with time, and seeing and sky transmission variations modify the PSF flux. These effects need to be corrected to properly combine the images and obtain optimal signal-to-noise ratios, accurate relative astrometry and photometry of detected companions as well as precise detection limits. Usually, one can easily correct for these effects by using the PSF core, but this is impossible when high dynamic range observing techniques are used, like coronagraphy with a non-transmissive occulting mask, or if the stellar PSF core is saturated. We present a new technique that can solve these issues by using off-axis satellite PSFs produced by a periodic amplitude or phase mask conjugated to a pupil plane. It will be shown that these satellite PSFs track precisely the PSF position, its Strehl ratio and its intensity and can thus be used to register and to flux normalize the PSF. This approach can be easily implemented in existing adaptive optics instruments and should be considered for future extreme adaptive optics coronagraph instruments and in high-contrast imaging space observatories.
Date: February 7, 2006
Creator: Marois, C; Lafreniere, D; Macintosh, B & Doyon, R
System: The UNT Digital Library
Minkowski's Object: A Starburst Triggered by a Radio Jet, Revisited (open access)

Minkowski's Object: A Starburst Triggered by a Radio Jet, Revisited

We present neutral hydrogen, ultraviolet, optical and near-infrared imaging, as well as optical spectroscopic observations of Minkowski's Object (MO), a star forming system at the end of a radio jet associated with NGC541 at the center of a cluster of galaxies, Abell 194. The observations strengthen the evidence, first presented in 1985, that MO is a small, peculiar galaxy in which the star formation has been triggered by the radio jet. Key new results are the discovery of a double H I cloud with a mass of 4.9 x 10{sup 8} M{sub {circle_dot}} straddling the radio jet downstream from MO at the location where the jet changes direction and decollimates; a strong detection of MO at near- and far-UV wavelengths and in H{alpha}, both of which also show a double structure; and what appear to be numerous H II regions and associated clusters in MO. The UV morphology of MO along the radio jet resembles the radio-aligned, rest-frame UV morphologies seen in many high redshift radio galaxies, which are also thought to be caused by jet-induced star formation. The UV, optical, and near-IR data show that the stellar population is dominated by a 7.5Myr-old instantaneous burst, with a total stellar …
Date: February 7, 2006
Creator: Croft, S.; van Breugel, W.; de Vries, W.; Dopita, M.; Martin, C.; Morganti, R. et al.
System: The UNT Digital Library
Thomson-scattering measurements of high electron temperature hohlraum plasmas for laser-plasma interaction studies (open access)

Thomson-scattering measurements of high electron temperature hohlraum plasmas for laser-plasma interaction studies

None
Date: February 7, 2006
Creator: Froula, D. H.; Ross, J. S.; Divol, L.; Meezan, N.; MacKinnon, A. J.; Wallace, R. et al.
System: The UNT Digital Library
Recent hybrid origin of three rare chinese turtles (open access)

Recent hybrid origin of three rare chinese turtles

Three rare geoemydid turtles described from Chinese tradespecimens in the early 1990s, Ocadia glyphistoma, O. philippeni, andSacalia pseudocellata, are suspected to be hybrids because they are knownonly from their original descriptions and because they have morphologiesintermediate between other, better-known species. We cloned the allelesof a bi-parentally inherited nuclear intron from samples of these threespecies. The two aligned parental alleles of O. glyphistoma, O.philippeni, and S. pseudocellata have 5-11.5 times more heterozygouspositions than do 13 other geoemydid species. Phylogenetic analysis showsthat the two alleles from each turtle are strongly paraphyletic, butcorrectly match sequences of other species that were hypothesized frommorphology to be their parental species. We conclude that these rareturtles represent recent hybrids rather than valid species. Specifically,"O. glyphistoma" is a hybrid of Mauremys sinensis and M. cf. annamensis,"O. philippeni" is a hybrid of M. sinensis and Cuora trifasciata, and "S.pseudocellata" is a hybrid of C. trifasciata and S. quadriocellata.Conservation resources are better directed toward finding and protectingpopulations of other rare Southeast Asian turtles that do representdistinct evolutionary lineages.
Date: February 7, 2006
Creator: Stuart, Bryan L. & Parham, James F.
System: The UNT Digital Library
NOMINATION FOR THE PROJECT MANAGEMENT INSTITUTE (PMI) PROJECT OF THE YEAR AWARD INTEGRATED DISPOSAL FACILITY (IDF) (open access)

NOMINATION FOR THE PROJECT MANAGEMENT INSTITUTE (PMI) PROJECT OF THE YEAR AWARD INTEGRATED DISPOSAL FACILITY (IDF)

CH2M HILL Hanford Group, Inc. (CH2M HILL) is pleased to nominate the Integrated Disposal Facility (IDF) project for the Project Management Institute's consideration as 2007 Project of the Year, Built for the U.S, Department of Energy's (DOE) Office of River Protection (ORP) at the Hanford Site, the IDF is the site's first Resource Conservation and Recovery Act (RCRA)-compliant disposal facility. The IDF is important to DOE's waste management strategy for the site. Effective management of the IDF project contributed to the project's success. The project was carefully managed to meet three Tri-Party Agreement (TPA) milestones. The completed facility fully satisfied the needs and expectations of the client, regulators and stakeholders. Ultimately, the project, initially estimated to require 48 months and $33.9 million to build, was completed four months ahead of schedule and $11.1 million under budget. DOE directed construction of the IDF to provide additional capacity for disposing of low-level radioactive and mixed (i.e., radioactive and hazardous) solid waste. The facility needed to comply with federal and Washington State environmental laws and meet TPA milestones. The facility had to accommodate over one million cubic yards of the waste material, including immobilized low-activity waste packages from the Waste Treatment Plant (WTP), …
Date: February 7, 2007
Creator: MCLELLAN, G.W.
System: The UNT Digital Library