26 Matching Results

Results open in a new window/tab.

Temperature dependent rheology of surfactant-hydroxypropyl cellulose solutions. (open access)

Temperature dependent rheology of surfactant-hydroxypropyl cellulose solutions.

The rheology of 1-8% hydroxypropyl cellulose (HPC) solutions has been studied in the temperature range of 20-45 degrees Celsius. The results showed that the relative viscosity at each HPC concentration decreases with increasing temperature. The relative viscosity decreases drastically at about 43 degrees Celsius due to a phase transition. The influence of anionic surfactant, sodium dodecylsulfate (SDS), induced gelation of a 2% HPC solution. The HPC solutions gelled at surfactant SDS concentrations ranging from 0.4 to 1.0 critical micelle concentration (CMC). The gelation of the HPC/SDS hydrogel is explained in the surfactant SDD - bridged HPC linear polymer chains. The complex viscosity - concentration profile was determined below the CMC of the SDS - water pair. The peak itself was a function of frequency indicating the presence of two relaxation times within the gelled network.
Date: December 2002
Creator: Snively, C. Todd
System: The UNT Digital Library

Thermal, Electrical, and Structural Analysis of Graphite Foam

Access: Use of this item is restricted to the UNT Community
A graphite foam was developed at Oak Ridge National Laboratory (ORNL) by Dr. James Klett and license was granted to POCO Graphite, Inc. to manufacture and market the product as PocoFoam™. Unlike many processes currently used to manufacture carbon foams, this process yields a highly graphitic structure and overcomes many limitations, such as oxidation stabilization, that are routinely encountered in the development of carbon foam materials. The structure, thermal properties, electrical resistivity, isotropy, and density uniformity of PocoFoam™ were evaluated. These properties and characteristics of PocoFoam™ are compared with natural and synthetic graphite in order to show that, albeit similar, it is unique. Thermal diffusivity and thermal conductivity were derived from Fourier's energy equation. It was determined that PocoFoam™ has the equivalent thermal conductivity of metals routinely used as heat sinks and that thermal diffusivity is as much as four times greater than pure copper and pure aluminum. SEM and XRD results indicate that PocoFoam™ has a high degree of crystalline alignment and near theoretical d spacing that is more typical of natural flake graphite than synthetic graphite. PocoFoam™ is anisotropic, indicating an isotropy factor of 0.5, and may yield higher thermal conductivity at cryogenic temperatures than is observed in …
Date: August 2001
Creator: Morgan, Dwayne Russell
System: The UNT Digital Library