Electron-impact ionization of atomic hydrogen (open access)

Electron-impact ionization of atomic hydrogen

Since the invention of quantum mechanics, even the simplest example of collisional breakup in a system of charged particles, e{sup {minus}} + H {r_arrow} H{sup +} + e{sup {minus}} + e{sup {minus}}, has stood as one of the last unsolved fundamental problems in atomic physics. A complete solution requires calculating the energies and directions for a final state in which three charged particles are moving apart. Advances in the formal description of three-body breakup have yet to lead to a viable computational method. Traditional approaches, based on two-body formalisms, have been unable to produce differential cross sections for the three-body final state. Now, by using a mathematical transformation of the Schrodinger equation that makes the final state tractable, a complete solution has finally been achieved, Under this transformation, the scattering wave function can be calculated without imposing explicit scattering boundary conditions. This approach has produced the first triple differential cross sections that agree on an absolute scale with experiment as well as the first ab initio calculations of the single differential cross section.
Date: February 14, 2000
Creator: Baertschy, Mark D.
System: The UNT Digital Library