Language

In-situ scanning probe microscopy of electrodeposited nickel. (open access)

In-situ scanning probe microscopy of electrodeposited nickel.

The performance characteristics and material properties such as stress, microstructure, and composition of nickel coatings and electroformed components can be controlled over a wide range by the addition of small amounts of surface-active compounds to the electroplating bath. Saccharin is one compound that is widely utilized for its ability to reduce tensile stress and refine grain size in electrodeposited nickel. While the effects of saccharin on nickel electrodeposition have been studied by many authors in the past, there is still uncertainty over saccharin's mechanisms of incorporation, stress reduction, and grain refinement. In-situ scanning probe microscopy (SPM) is a tool that can be used to directly image the nucleation and growth of thin nickel films at nanometer length scales to help elucidate saccharin's role in the development and evolution of grain structure. In this study, in-situ atomic force microscopy (AFM) and scanning tunneling microscopy (STM) techniques are used to investigate the effects of saccharin on the morphological evolution of thin nickel films. By observing mono-atomic height nickel island growth with and without saccharin present we conclude that saccharin has little effect on the nickel surface mobility during deposition at low overpotentials where the growth occurs in a layer-by-layer mode. Saccharin was …
Date: October 1, 2004
Creator: Kelly, James J. & Dibble, Dean C.
Object Type: Report
System: The UNT Digital Library
Scalable fault tolerant algorithms for linear-scaling coupled-cluster electronic structure methods. (open access)

Scalable fault tolerant algorithms for linear-scaling coupled-cluster electronic structure methods.

By means of coupled-cluster theory, molecular properties can be computed with an accuracy often exceeding that of experiment. The high-degree polynomial scaling of the coupled-cluster method, however, remains a major obstacle in the accurate theoretical treatment of mainstream chemical problems, despite tremendous progress in computer architectures. Although it has long been recognized that this super-linear scaling is non-physical, the development of efficient reduced-scaling algorithms for massively parallel computers has not been realized. We here present a locally correlated, reduced-scaling, massively parallel coupled-cluster algorithm. A sparse data representation for handling distributed, sparse multidimensional arrays has been implemented along with a set of generalized contraction routines capable of handling such arrays. The parallel implementation entails a coarse-grained parallelization, reducing interprocessor communication and distributing the largest data arrays but replicating as many arrays as possible without introducing memory bottlenecks. The performance of the algorithm is illustrated by several series of runs for glycine chains using a Linux cluster with an InfiniBand interconnect.
Date: October 1, 2004
Creator: Leininger, Matthew L.; Nielsen, Ida Marie B. & Janssen, Curtis L.
Object Type: Report
System: The UNT Digital Library
Hohlraum-driven ignition-like double-shell implosions on the Omega laser facility (open access)

Hohlraum-driven ignition-like double-shell implosions on the Omega laser facility

High-convergence ignition-like double-shell implosion experiments have been performed on the Omega laser facility [T.R. Boehly et al., Opt. Commun. 133, 495 (1997)] using cylindrical gold hohlraums with 40 drive beams. Repeatable, dominant primary (2.45 MeV) neutron production from the mix-susceptible compressional phase of a double-shell implosion, using fall-line design optimization and exacting fabrication standards, is experimentally inferred from time-resolved core x-ray imaging. Effective control of fuel-pusher mix during final compression is essential for achieving noncryogenic ignition with double-shell targets on the National Ignition Facility [Paisner et al., Laser Focus World 30, 75 (1994)].
Date: October 1, 2004
Creator: Amendt, P.; Robey, H. F.; Park, H. S.; Tipton, R. E.; Turner, R. E.; Milovich, J. L. et al.
Object Type: Article
System: The UNT Digital Library
Molecular dynamics of membrane proteins. (open access)

Molecular dynamics of membrane proteins.

Understanding the dynamics of the membrane protein rhodopsin will have broad implications for other membrane proteins and cellular signaling processes. Rhodopsin (Rho) is a light activated G-protein coupled receptor (GPCR). When activated by ligands, GPCRs bind and activate G-proteins residing within the cell and begin a signaling cascade that results in the cell's response to external stimuli. More than 50% of all current drugs are targeted toward G-proteins. Rho is the prototypical member of the class A GPCR superfamily. Understanding the activation of Rho and its interaction with its Gprotein can therefore lead to a wider understanding of the mechanisms of GPCR activation and G-protein activation. Understanding the dark to light transition of Rho is fully analogous to the general ligand binding and activation problem for GPCRs. This transition is dependent on the lipid environment. The effect of lipids on membrane protein activity in general has had little attention, but evidence is beginning to show a significant role for lipids in membrane protein activity. Using the LAMMPS program and simulation methods benchmarked under the IBIG program, we perform a variety of allatom molecular dynamics simulations of membrane proteins.
Date: October 1, 2004
Creator: Woolf, Thomas B. (Johns Hopkins University School of Medicine, Baltimore, MD); Crozier, Paul Stewart & Stevens, Mark Jackson
Object Type: Report
System: The UNT Digital Library
Effect of high-viscosity interphases on drainage between hydrophilic surfaces. (open access)

Effect of high-viscosity interphases on drainage between hydrophilic surfaces.

Drainage of water from the region between an advancing probe tip and a flat sample is reconsidered under the assumption that the tip and sample surfaces are both coated by a thin water 'interphase' (of width {approx}a few nm) whose viscosity is much higher than the bulk liquid's. A formula derived by solving the Navier-Stokes equations allows one to extract an interphase viscosity of {approx}59 KPa-sec (or {approx}6.6x10{sup 7} times the viscosity of bulk water at 25C) from Interfacial Force Microscope measurements with both tip and sample functionalized hydrophilic by OH-terminated tri(ethylene glycol) undecylthiol, self-assembled monolayers.
Date: October 1, 2004
Creator: Feibelman, Peter Julian
Object Type: Report
System: The UNT Digital Library
Photonic encryption : modeling and functional analysis of all optical logic. (open access)

Photonic encryption : modeling and functional analysis of all optical logic.

With the build-out of large transport networks utilizing optical technologies, more and more capacity is being made available. Innovations in Dense Wave Division Multiplexing (DWDM) and the elimination of optical-electrical-optical conversions have brought on advances in communication speeds as we move into 10 Gigabit Ethernet and above. Of course, there is a need to encrypt data on these optical links as the data traverses public and private network backbones. Unfortunately, as the communications infrastructure becomes increasingly optical, advances in encryption (done electronically) have failed to keep up. This project examines the use of optical logic for implementing encryption in the photonic domain to achieve the requisite encryption rates. This paper documents the innovations and advances of work first detailed in 'Photonic Encryption using All Optical Logic,' [1]. A discussion of underlying concepts can be found in SAND2003-4474. In order to realize photonic encryption designs, technology developed for electrical logic circuits must be translated to the photonic regime. This paper examines S-SEED devices and how discrete logic elements can be interconnected and cascaded to form an optical circuit. Because there is no known software that can model these devices at a circuit level, the functionality of S-SEED devices in an optical …
Date: October 1, 2004
Creator: Tang, Jason D.; Schroeppel, Richard Crabtree & Robertson, Perry J.
Object Type: Report
System: The UNT Digital Library
Direct single ion machining of nanopores. (open access)

Direct single ion machining of nanopores.

The irradiation of thin insulating films by high-energy ions (374 MeV Au{sup +25} or 241 MeV I{sup +19}) was used to attempt to form nanometer-size pores through the films spontaneously. Such ions deposit a large amount of energy into the target materials ({approx}20 keV/nm), which significantly disrupts their atomic lattice and sputters material from the surfaces, and might produce nanopores for appropriate ion-material combinations. Transmission electron microscopy was used to examine the resulting ion tracks. Tracks were found in the crystalline oxides quartz, sapphire, and mica. Sapphire and mica showed ion tracks that are likely amorphous and exhibit pits 5 nm in diameter on the surface at the ion entrance and exit points. This suggests that nanopores might form in mica if the film thickness is less than {approx}10 nm. Tracks in quartz showed strain in the matrix around them. Tracks were not found in the amorphous thin films examined: 20 nm-SiN{sub x}, deposited SiOx, fused quartz (amorphous SiO{sub 2}), formvar and 3 nm-C. Other promising materials for nanopore formation were identified, including thin Au and SnO{sub 2} layers.
Date: October 1, 2004
Creator: Doyle, Barney Lee; Follstaedt, David Martin; Rossi, Paolo & Norman, Adam K.
Object Type: Report
System: The UNT Digital Library
A set of verification test cases for Eiger : plane wave scattering from a sphere. (open access)

A set of verification test cases for Eiger : plane wave scattering from a sphere.

This report discusses a set of verification test cases for the frequency-domain, boundary-element, electromagnetics code Eiger based on the analytical solution of plane wave scattering from a sphere. Three cases will be considered: when the sphere is made of perfect electric conductor, when the sphere is made of lossless dielectric and when the sphere is made of lossy dielectric. We outline the procedures that must be followed in order to carefully compare the numerical solution to the analytical solution. We define an error criterion and demonstrate convergence behavior for both the analytical and numerical cases. These problems test the code's ability to calculate the surface current density and secondary quantities, such as near fields and far fields.
Date: October 1, 2004
Creator: Jorgenson, Roy Eberhardt & Kotulski, Joseph Daniel
Object Type: Report
System: The UNT Digital Library
Coho Salmon Master Plan, Clearwater River Basin. (open access)

Coho Salmon Master Plan, Clearwater River Basin.

The Nez Perce Tribe has a desire and a goal to reintroduce and restore coho salmon to the Clearwater River Subbasin at levels of abundance and productivity sufficient to support sustainable runs and annual harvest. Consistent with the Clearwater Subbasin Plan (EcoVista 2003), the Nez Perce Tribe envisions developing an annual escapement of 14,000 coho salmon to the Clearwater River Subbasin. In 1994, the Nez Perce Tribe began coho reintroduction by securing eggs through U.S. v. Oregon; by 1998 this agreement provided an annual transfer of 550,000 coho salmon smolts from lower Columbia River hatchery facilities for release in the Clearwater River Subbasin. In 1998, the Northwest Power and Conservation Council authorized the Bonneville Power Administration to fund the development of a Master Plan to guide this reintroduction effort. This Master Plan describes the results of experimental releases of coho salmon in the Clearwater River Subbasin, which have been ongoing since 1995. These data are combined with results of recent coho reintroduction efforts by the Yakama Nation, general coho life history information, and historical information regarding the distribution and life history of Snake River coho salmon. This information is used to assess a number of alternative strategies aimed at restoring …
Date: October 1, 2004
Creator: Tribe, Nez Perce & FishPro
Object Type: Report
System: The UNT Digital Library
Understanding communication in counterterrorism crisis management. (open access)

Understanding communication in counterterrorism crisis management.

This report describes the purpose and results of the two-year, Sandia-sponsored Laboratory Directed Research and Development (LDRD) project entitled Understanding Communication in Counterterrorism Crisis Management The purpose of this project was to facilitate the capture of key communications among team members in simulated training exercises, and to learn how to improve communication in that domain. The first section of this document details the scenario development aspects of the simulation. The second section covers the new communication technologies that were developed and incorporated into the Weapons of Mass Destruction Decision Analysis Center (WMD-DAC) suite of decision support tools. The third section provides an overview of the features of the simulation and highlights its communication aspects. The fourth section describes the Team Communication Study processes and methodologies. The fifth section discusses future directions and areas in which to apply the new technologies and study results obtained as a result of this LDRD.
Date: October 1, 2004
Creator: Djordjevich, Donna D.; Barr, Pamela K.; Arnold, Jason Darrel; Johnson, Michael M.; Sa, Timothy J.; Hawley, Marilyn F. et al.
Object Type: Report
System: The UNT Digital Library
Geomechanics of penetration : experimental and computational approaches : final report for LDRD project 38718. (open access)

Geomechanics of penetration : experimental and computational approaches : final report for LDRD project 38718.

The purpose of the present work is to increase our understanding of which properties of geomaterials most influence the penetration process with a goal of improving our predictive ability. Two primary approaches were followed: development of a realistic, constitutive model for geomaterials and designing an experimental approach to study penetration from the target's point of view. A realistic constitutive model, with parameters based on measurable properties, can be used for sensitivity analysis to determine the properties that are most important in influencing the penetration process. An immense literature exists that is devoted to the problem of predicting penetration into geomaterials or similar man-made materials such as concrete. Various formulations have been developed that use an analytic or more commonly, numerical, solution for the spherical or cylindrical cavity expansion as a sort of Green's function to establish the forces acting on a penetrator. This approach has had considerable success in modeling the behavior of penetrators, both as to path and depth of penetration. However the approach is not well adapted to the problem of understanding what is happening to the material being penetrated. Without a picture of the stress and strain state imposed on the highly deformed target material, it is …
Date: October 1, 2004
Creator: Hardy, Robert Douglas; Holcomb, David Joseph; Gettemy, Glen L.; Fossum, Arlo Frederick; Rivas, Raul R.; Bronowski, David R. et al.
Object Type: Report
System: The UNT Digital Library
REMOVAL OF TECHNETIUM 99 FROM THE EFFLUENT TREATMENT FACILITY (ETF) BASIN 44 USING PUROLITE A-530E & REILLEX HPQ & SYBRON IONAC SR-7 ION EXCHANGE RESINS (open access)

REMOVAL OF TECHNETIUM 99 FROM THE EFFLUENT TREATMENT FACILITY (ETF) BASIN 44 USING PUROLITE A-530E & REILLEX HPQ & SYBRON IONAC SR-7 ION EXCHANGE RESINS

This report documents the laboratory testing and analyses as directed under the test plan, RPP-20407. The overall goal of this task was to evaluate and compare candidate anion exchange resins for their capacity to remove Technetium-99 from Basin 44 Reverse Osmosis reject stream. The candidate resins evaluated were Purolite A-530E, Reillex HPQ, and Sybron IONAC SR-7.
Date: October 29, 2004
Creator: JB, DUNCAN
Object Type: Report
System: The UNT Digital Library
Soot formation, transport, and radiation in unsteady diffusion flames : LDRD final report. (open access)

Soot formation, transport, and radiation in unsteady diffusion flames : LDRD final report.

Fires pose the dominant risk to the safety and security of nuclear weapons, nuclear transport containers, and DOE and DoD facilities. The thermal hazard from these fires primarily results from radiant emission from high-temperature flame soot. Therefore, it is necessary to understand the local transport and chemical phenomena that determine the distributions of soot concentration, optical properties, and temperature in order to develop and validate constitutive models for large-scale, high-fidelity fire simulations. This report summarizes the findings of a Laboratory Directed Research and Development (LDRD) project devoted to obtaining the critical experimental information needed to develop such constitutive models. A combination of laser diagnostics and extractive measurement techniques have been employed in both steady and pulsed laminar diffusion flames of methane, ethylene, and JP-8 surrogate burning in air. For methane and ethylene, both slot and coannular flame geometries were investigated, as well as normal and inverse diffusion flame geometries. For the JP-8 surrogate, coannular normal diffusion flames were investigated. Soot concentrations, polycyclic aromatic hydrocarbon (PAH) laser-induced fluorescence (LIF) signals, hydroxyl radical (OH) LIF, acetylene and water vapor concentrations, soot zone temperatures, and the velocity field were all successfully measured in both steady and unsteady versions of these various flames. In …
Date: October 1, 2004
Creator: Suo-Anttila, Jill Marie (Sandia National Laboratories, Albuquerque, NM); Williams, Timothy C.; Shaddix, Christopher R.; Jensen, Kirk A. (Sandia National Laboratories, Albuquerque, NM); Blevins, Linda Gail; Kearney, Sean Patrick (Sandia National Laboratories, Albuquerque, NM) et al.
Object Type: Report
System: The UNT Digital Library
Atmospheric Radiation Measurement Program Science Plan Current Status and Future Directions of the ARM Science Program (open access)

Atmospheric Radiation Measurement Program Science Plan Current Status and Future Directions of the ARM Science Program

The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: • Maintain the data record at the fixed ARM sites for at least the next five years. • Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square. • Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds. • Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations. • Implement and evaluate an operational …
Date: October 30, 2004
Creator: Ackerman, TP; Genio, AD Del; Ellingson, RG; Ferrare, RA; Klein, SA; McFarquhar, GM et al.
Object Type: Report
System: The UNT Digital Library
YUMMY: The Yucca Mountain MCNP-Library (open access)

YUMMY: The Yucca Mountain MCNP-Library

None
Date: October 26, 2004
Creator: Alpan, FA
Object Type: Report
System: The UNT Digital Library
On The Reproducibility of Seasonal Land-surface Climate (open access)

On The Reproducibility of Seasonal Land-surface Climate

The sensitivity of the continental seasonal climate to initial conditions is estimated from an ensemble of decadal simulations of an atmospheric general circulation model with the same specifications of radiative forcings and monthly ocean boundary conditions, but with different initial states of atmosphere and land. As measures of the ''reproducibility'' of continental climate for different initial conditions, spatio-temporal correlations are computed across paired realizations of eleven model land-surface variables in which the seasonal cycle is either included or excluded--the former case being pertinent to climate simulation, and the latter to seasonal anomaly prediction. It is found that the land-surface variables which include the seasonal cycle are impacted only marginally by changes in initial conditions; moreover, their seasonal climatologies exhibit high spatial reproducibility. In contrast, the reproducibility of a seasonal land-surface anomaly is generally low, although it is substantially higher in the Tropics; its spatial reproducibility also markedly fluctuates in tandem with warm and cold phases of the El Nino/Southern Oscillation. However, the overall degree of reproducibility depends strongly on the particular land-surface anomaly considered. It is also shown that the predictability of a land-surface anomaly implied by its reproducibility statistics is consistent with what is inferred from more conventional predictability …
Date: October 22, 2004
Creator: Phillips, T J
Object Type: Article
System: The UNT Digital Library
LIQUID EFFLUENT RETENTION FACILITY (LERF) BASIN 42 STUDIES (open access)

LIQUID EFFLUENT RETENTION FACILITY (LERF) BASIN 42 STUDIES

This report documents laboratory results obtained under test plan RPP-21533 for samples submitted by the Effluent Treatment Facility (ETF) from the Liquid Effluent Retention Facility (LERF) Basin 42 (Reference 1). The LERF Basin 42 contains process condensate (PC) from the 242-A Evaporator and landfill leachate. The ETF processes one PC campaign approximately every 12 to 18 months. A typical PC campaign volume can range from 1.5 to 2.5 million gallons. During the September 2003 ETF Basin 42 processing campaign, a recurring problem with 'gelatinous buildup' on the outlet filters from 60A-TK-I (surge tank) was observed (Figure 1). This buildup appeared on the filters after the contents of the surge tank were adjusted to a pH of between 5 and 6 using sulfuric acid. Biological activity in the PC feed was suspected to be the cause of the gelatinous material. Due to this buildup, the filters (10 {micro}m CUNO) required daily change out to maintain process throughput.
Date: October 29, 2004
Creator: JB, DUNCAN
Object Type: Report
System: The UNT Digital Library
Waste Isolation Pilot Plant Biennial Environmental Compliance Report (open access)

Waste Isolation Pilot Plant Biennial Environmental Compliance Report

This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed and authorized for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 2002, to March 31, 2004. As required by the WIPP Land Withdrawal Act (LWA) (Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico.
Date: October 25, 2004
Creator: Washington Regulatory and Environmental Services
Object Type: Report
System: The UNT Digital Library
The Hydrogen Futures Simulation Model (H[2]Sim) technical description. (open access)

The Hydrogen Futures Simulation Model (H[2]Sim) technical description.

Hydrogen has the potential to become an integral part of our energy transportation and heat and power sectors in the coming decades and offers a possible solution to many of the problems associated with a heavy reliance on oil and other fossil fuels. The Hydrogen Futures Simulation Model (H2Sim) was developed to provide a high level, internally consistent, strategic tool for evaluating the economic and environmental trade offs of alternative hydrogen production, storage, transport and end use options in the year 2020. Based on the model's default assumptions, estimated hydrogen production costs range from 0.68 $/kg for coal gasification to as high as 5.64 $/kg for centralized electrolysis using solar PV. Coal gasification remains the least cost option if carbon capture and sequestration costs ($0.16/kg) are added. This result is fairly robust; for example, assumed coal prices would have to more than triple or the assumed capital cost would have to increase by more than 2.5 times for natural gas reformation to become the cheaper option. Alternatively, assumed natural gas prices would have to fall below $2/MBtu to compete with coal gasification. The electrolysis results are highly sensitive to electricity costs, but electrolysis only becomes cost competitive with other options …
Date: October 1, 2004
Creator: Jones, Scott A.; Kamery, William; Baker, Arnold Barry; Drennen, Thomas E.; Lutz, Andrew E. & Rosthal, Jennifer Elizabeth
Object Type: Report
System: The UNT Digital Library
Further Tests of Changes in Fish Escape Behavior Resulting from Sublethal Stresses Associated with Hydroelectric Turbine Passage (open access)

Further Tests of Changes in Fish Escape Behavior Resulting from Sublethal Stresses Associated with Hydroelectric Turbine Passage

Fish that pass through a hydroelectric turbine may not be killed directly, but may nonetheless experience sublethal stresses that will increase their susceptibility to predators (indirect mortality). There is a need to develop reliable tests for indirect mortality so that the full consequences of passage through turbines (and other routes around a hydroelectric dam) can be assessed. The most commonly used laboratory technique for assessing susceptibility to predation is the predator preference test. In this report, we evaluate the field application of a new technique that may be valuable for assessing indirect mortality, based on changes in a behavioral response to a startling stimulus (akin to perceiving an approaching predator). The behavioral response is a rapid movement commonly referred to as a startle response, escape response, or C-shape, based on the characteristic body position assumed by the fish. When viewed from above, a startled fish bends into a C-shape, then springs back and swims away in a direction different from its original orientation. This predator avoidance (escape) behavior can be compromised by sublethal stresses that temporarily stun or disorient the fish. Initial studies demonstrated that turbulence created in a small laboratory tank can alter escape behavior. As a next step, …
Date: October 20, 2004
Creator: Ryon, M.G.
Object Type: Report
System: The UNT Digital Library
TOXECON RETROFIT FOR MERCURY AND MULTI-POLLUTANT CONTROL-ON THREE 90 MW COAL FIRED BOILERS (open access)

TOXECON RETROFIT FOR MERCURY AND MULTI-POLLUTANT CONTROL-ON THREE 90 MW COAL FIRED BOILERS

With the Nation's coal-burning utilities facing tighter controls on mercury pollutants, the U.S. Department of Energy is supporting projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by a particle control device along with the other solid material, primarily fly ash. We Energies has over 3,200 MW of coal-fired generating capacity and supports an integrated multi-emission control strategy for SO{sub 2}, NO{sub x} and mercury emissions while maintaining a varied fuel mix for electric supply. The primary goal of this project is to reduce mercury emissions from three 90 MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant. Additional goals are to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter (PM) emissions, allow for reuse and sale of fly ash, demonstrate a reliable …
Date: October 26, 2004
Creator: Johnson, Richard E.
Object Type: Report
System: The UNT Digital Library
CH-TRU Waste Content Codes (CH-TRUCON) (open access)

CH-TRU Waste Content Codes (CH-TRUCON)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 …
Date: October 1, 2004
Creator: Westinghouse TRU Solutions LLC
Object Type: Report
System: The UNT Digital Library
An Evaluation of Three Commercially Available Technologies For Real-Time Measurement of Rates of Outdoor Airflow Into HVAC Systems (open access)

An Evaluation of Three Commercially Available Technologies For Real-Time Measurement of Rates of Outdoor Airflow Into HVAC Systems

During the last few years, new technologies have been introduced for real-time continuous measurement of the flow rates of outdoor air (OA) into HVAC systems; however, an evaluation of these measurements technologies has not previously been published. This document describes a test system and protocols developed for a controlled evaluation of these measurement technologies. The results of tests of three commercially available measurement technologies are also summarized. The test system and protocol were judged practical and very useful. The three commercially available measurement technologies should provide reasonably, e.g., 20%, accurate measurements of OA flow rates as long as air velocities are maintained high enough to produce accurately measurable pressure signals. In HVAC systems with economizer controls, to maintain the required air velocities the OA intake will need to be divided into two sections in parallel, each with a separate OA damper. All of the measurement devices had pressure drops that are likely to be judged acceptable. The influence of wind on the accuracy of these measurement technologies still needs to be evaluated.
Date: October 28, 2004
Creator: Fisk, William J.; Faulkner, David & Sullivan, Douglas P.
Object Type: Article
System: The UNT Digital Library
Photoelectrochemical Hydrogen Production Using New Combinatorial Chemistry Derived Materials (open access)

Photoelectrochemical Hydrogen Production Using New Combinatorial Chemistry Derived Materials

Solar photoelectrochemical water-splitting has long been viewed as one of the “holy grails” of chemistry because of its potential impact as a clean, renewable method of fuel production. Several known photocatalytic semiconductors can be used; however, the fundamental mechanisms of the process remain poorly understood and no known material has the required properties for cost effective hydrogen production. In order to investigate morphological and compositional variations in metal oxides as they relate to opto-electrochemical properties, we have employed a combinatorial methodology using automated, high-throughput, electrochemical synthesis and screening together with conventional solid-state methods. This report discusses a number of novel, high-throughput instruments developed during this project for the expeditious discovery of improved materials for photoelectrochemical hydrogen production. Also described within this report are results from a variety of materials (primarily tungsten oxide, zinc oxide, molybdenum oxide, copper oxide and titanium dioxide) whose properties were modified and improved by either layering, inter-mixing, or doping with one or more transition metals. Furthermore, the morphologies of certain materials were also modified through the use of structure directing agents (SDA) during synthesis to create mesostructures (features 2-50 nm) that increased surface area and improved rates of hydrogen production.
Date: October 25, 2004
Creator: Jaramillo, Thomas F.; Baeck, Sung-Hyeon; Kleiman-Shwarsctein, Alan; Stucky, Galen D. (PI) & McFarland, Eric W.
Object Type: Report
System: The UNT Digital Library