Language

Experimental Study of the Spin Structure of the Neutron (3He) at low Q2: a connection between the Bjorken and Gerasimov-Drell-Hearn Sum Rules (open access)

Experimental Study of the Spin Structure of the Neutron (3He) at low Q2: a connection between the Bjorken and Gerasimov-Drell-Hearn Sum Rules

The authors have presented the motivations in gathering doubly polarized data in the quasi-elastic, resonance and DIS domains. These data were used to calculate the extended GDH integral. The comparison of this quantity with the spin dependent forward Compton amplitude {bar S}{sub 1} is of particular importance for the unification of the two strong interaction descriptions (nucleonic/hadronic vs. partonic) because {bar S}{sub 1} is the first quantity theoretically calculable in the full Q{sup 2} domain of the strong interaction. Such a data taking was made possible because of three major technical achievements: (1) the beam of high duty cycle (100%), high current (up to 70 {micro}A) and high polarization (70%); (2) the {sup 3}He target of high density (above 10 atm) with a polarization of 35% and a length of 40 cm; and (3) the large acceptance (6 msr) and high resolution ({Delta}P/P {approx_equal} 10{sup {minus}4}) spectrometers. These features, available at Jefferson Lab, enabled them to achieve the highest luminosity in the world (about 10{sup 36} s{sup {minus}1} cm{sup {minus}2} with a current of 15 {micro}A) as far as polarized {sup 3}He targets are concerned. Consequently they were able to gather, in a rather short period of time (3 months), …
Date: October 9, 2000
Creator: Deur, Alexander
System: The UNT Digital Library