Design study of a DPIS injector for a heavy ion FFAG (open access)

Design study of a DPIS injector for a heavy ion FFAG

A new heavy ion injector linac is proposed for providing heavy ion beams to a fixed field alternating gradient (FFAG) accelerator in Kyushu University. A combination of the new intense laser source based injector and the FFAG will be able to accelerate high current ion beams with 100 Hz of a repetition rate. The planned average current reaches 7 {micro}A with carbon 6+ beam.
Date: September 29, 2008
Creator: Okamura,M.; Raparia, D.; Ishibashi, K.; Yonemura, Y. & Kanesue, T.
Object Type: Article
System: The UNT Digital Library
XTOD to Conventional Facilities Interface Control Document (open access)

XTOD to Conventional Facilities Interface Control Document

This document describes the interface between the LCLS X-ray Transport and Diagnostics (XTOD) (WBS 1.5) and the LCLS Conventional Facilities (CF) (WBS 1.1). The interface locations ranging from the beam dump to the far experimental hall are identified. Conventional Facilities provides x-ray, beamline and equipment enclosures, mounting surfaces, conventional utilities, compressed (clean, dry) air, process and purge gases, exhaust systems, power, and environmental conditions for the XTOD components and controls.
Date: September 29, 2005
Creator: McMahon, D
Object Type: Report
System: The UNT Digital Library
Facilitation of the Estuary/Ocean Subgroup for Federal Research, Monitoring, and Evaluation, FY08 Annual Report (open access)

Facilitation of the Estuary/Ocean Subgroup for Federal Research, Monitoring, and Evaluation, FY08 Annual Report

The Estuary/Ocean Subgroup (EOS) is part of the research, monitoring, and evaluation (RME) effort that the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) developed in response to obligations arising from the Endangered Species Act as applied to operation of the Federal Columbia River Power System (FCRPS). The goal of the EOS project is to facilitate activities of the estuary/ocean RME subgroup as it coordinates design and implementation of federal RME in the lower Columbia River and estuary. In fiscal year 2008 (FY08), EOS project accomplishments included 1) subgroup meetings; 2) participation in the estuary work group of the Pacific Northwest Aquatic Monitoring Partnership; 3) project management via the project tracking system, Pisces; 4) quarterly project status reports; and 5) a major revision to the Estuary RME document and its subsequent regional release (new version January 2008). Many of the estuary RME recommendations in this document were incorporated into the Biological Opinion on hydrosystem operations (May 2008). In summary, the FY08 EOS project resulted in expanded, substantive coordination with other regional RME forums, a new version of the federal Estuary RME program document, and implementation coordination. This annual report is a FY08 deliverable for …
Date: September 29, 2008
Creator: Johnson, Gary E. & Diefenderfer, Heida L.
Object Type: Report
System: The UNT Digital Library
Simulation of a D-T Neutron Source for Neutron ScatteringExperiments (open access)

Simulation of a D-T Neutron Source for Neutron ScatteringExperiments

None
Date: September 29, 2003
Creator: Lou, T. P.; Ludewigt, B. A.; Vujic, J. L. & Leung, K. N.
Object Type: Article
System: The UNT Digital Library
MEASUREMENT OF SPECIFIC HEAT CAPACITY OF SALTSTONE (open access)

MEASUREMENT OF SPECIFIC HEAT CAPACITY OF SALTSTONE

One of the goals of the Saltstone variability study is to identify (and quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone grout mixtures. The heat capacity of the Saltstone waste form is one of the important properties of Saltstone mixes that was last measured at SRNL in 1997. It is therefore important to develop a core competency for rapid and accurate analysis of the specific heat capacity of the Saltstone mixes in order to quantify the impact of compositional and operational variations on this property as part of the variability study. The heat capacity, coupled with the heat of hydration data obtained from isothermal calorimetry for a given Saltstone mix, can be used to predict the maximum temperature increase in the cells within the vaults of the Saltstone Disposal Facility (SDF). The temperature increase controls the processing rate and the pour schedule. The maximum temperature is also important to the performance properties of the Saltstone. For example, in mass pours of concrete or grout of which Saltstone is an example, the maximum temperature increase and the maximum temperature difference (between the surface and the hottest location) are …
Date: September 29, 2008
Creator: Harbour, J & Vickie Williams, V
Object Type: Report
System: The UNT Digital Library
Ultrasonic Examination of Double-Shell Tank 241-AP-107 Examination Completed February 2008 (open access)

Ultrasonic Examination of Double-Shell Tank 241-AP-107 Examination Completed February 2008

AREVA Federal Services LLC (AFS), under a contract from CH2M HILL Hanford Group (CH2M HILL), has performed an ultrasonic examination of selected portions of Double-Shell Tank 241-AP-107. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the primary tank. The requirements for the ultrasonic examination of Tank 241-AP-107 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning, pitting, or cracks that might be present in the wall of the primary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan (ETP), RPP-Plan-34301 (Castleberry 2007) and summarized on page 1 of this document, are to be reported to CH2M HILL and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M HILL, all data is to be recorded on electronic media and paper copies of all measurements are provided to PNNL for third-party evaluation. PNNL is responsible for preparing a report(s) that describes the results of the AFS ultrasonic examinations.
Date: September 29, 2008
Creator: Pardini, Allan F.; Weier, Dennis R. & Anderson, Kevin K.
Object Type: Report
System: The UNT Digital Library
SLUDGE BATCH 5 VARIABILITY STUDY WITH FRIT 418 (open access)

SLUDGE BATCH 5 VARIABILITY STUDY WITH FRIT 418

The Defense Waste Processing Facility (DWPF) is preparing to initiate processing Sludge Batch 5 (SB5) in early FY 2009. In support of the upcoming processing, the Savannah River National Laboratory (SRNL) provided a recommendation to utilize Frit 418 as a transitional frit to initiate processing of SB5. This recommendation was based on the results of assessments on the compositional projections for SB5 available at that time from both the Liquid Waste Organization (LWO) and SRNL (using a model-based approach). To support qualification of the Frit 418-SB5 system, SRNL executed a variability study to assess the acceptability of the Frit 418-SB5 glasses with respect to durability and the applicability of the current durability models. Twenty one glasses were selected for the variability study based on the available SB5 projections primarily spanning a waste loading (WL) range of 25-37%. In order to account for the addition of caustic to Tank 40, which occurred in July 2008, 3 wt% Na2O was added to the original Tank 40 heel projections. The addition of the Actinide Removal Process (ARP) stream to the blend composition was also included. Two of the glasses were fabricated at 25% and 28% WL in order to challenge the homogeneity constraint …
Date: September 29, 2008
Creator: Raszewski, F; Tommy Edwards, T & David Peeler, D
Object Type: Report
System: The UNT Digital Library
BENCHMARKING ORTEC ISOTOPIC MEASUREMENTS AND CALCULATIONS (open access)

BENCHMARKING ORTEC ISOTOPIC MEASUREMENTS AND CALCULATIONS

This report represents a description of compiled benchmark tests conducted to probe and to demonstrate the extensive utility of the Ortec ISOTOPIC {gamma}-ray analysis computer program. The ISOTOPIC program performs analyses of {gamma}-ray spectra applied to specific acquisition configurations in order to apply finite-geometry correction factors and sample-matrix-container photon absorption correction factors. The analysis program provides an extensive set of preset acquisition configurations to which the user can add relevant parameters in order to build the geometry and absorption correction factors that the program determines from calculus and from nuclear g-ray absorption and scatter data. The Analytical Development Section field nuclear measurement group of the Savannah River National Laboratory uses the Ortec ISOTOPIC analysis program extensively for analyses of solid waste and process holdup applied to passive {gamma}-ray acquisitions. Frequently the results of these {gamma}-ray acquisitions and analyses are to determine compliance with facility criticality safety guidelines. Another use of results is to designate 55-gallon drum solid waste as qualified TRU waste3 or as low-level waste. Other examples of the application of the ISOTOPIC analysis technique to passive {gamma}-ray acquisitions include analyses of standard waste box items and unique solid waste configurations. In many passive {gamma}-ray acquisition circumstances the container …
Date: September 29, 2008
Creator: Dewberry, R; Raymond Sigg, R; Vito Casella, V & Nitin Bhatt, N
Object Type: Report
System: The UNT Digital Library
Design and Construction Solutions in the Accurate Realization of NCSX Magnetic Fields (open access)

Design and Construction Solutions in the Accurate Realization of NCSX Magnetic Fields

The National Compact Stellarator Experiment, NCSX, is being constructed at the Princeton Plasma Physics Laboratory (PPPL) in partnership with the Oak Ridge national Laboratory. The goal of NCSX is to provide the understanding necessary to develop an attractive, disruption free, steady state compact stellaratorbased reactor design. This paper describes the recently revised designs of the critical interfaces between the modular coils, the construction solutions developed to meet assembly tolerances, and the recently revised trim coil system that provides the required compensation to correct for the “as built” conditions and to allow flexibility in the disposition of as-built conditions. In May, 2008, the sponsor decided to terminate the NCSX project due to growth in the project’s cost and schedule estimates. However significant technical challenges in design and construction were overcome, greatly reducing the risk in the remaining work to complete the project.
Date: September 29, 2008
Creator: Heitzenroeder, P.; Dudek, Lawrence E.; Brooks, Arthur W.; Viola, Michael E.; Brown, Thomas; Neilson, George H. et al.
Object Type: Article
System: The UNT Digital Library
Pacific Northwest National Laboratory Site Dose-per-Unit-Release Factors for Use in Calculating Radionuclide Air Emissions Potential-to-Emit Doses (open access)

Pacific Northwest National Laboratory Site Dose-per-Unit-Release Factors for Use in Calculating Radionuclide Air Emissions Potential-to-Emit Doses

This report documents assumptions and inputs used to prepare the dose-per-unit-release factors for the Pacific Northwest National Laboratory (PNNL) Site (including the buildings that make up the Physical Sciences Facility [PSF] as well as the Environmental Molecular Sciences Laboratory [EMSL]) calculated using the EPA-approved Clean Air Act Assessment Package 1988–Personal Computer (CAP88-PC) Version 3 software package. The dose-per-unit-release factors are used to prepare dose estimates for a maximum public receptor (MPR) in support of Radioactive Air Pollutants Notice of Construction (NOC) applications for the PNNL Site.
Date: September 29, 2008
Creator: Barnett, J. M. & Rhoads, Kathleen
Object Type: Report
System: The UNT Digital Library
POST-PROCESSING ANALYSIS FOR THC SEEPAGE (open access)

POST-PROCESSING ANALYSIS FOR THC SEEPAGE

This report describes the selection of water compositions for the total system performance assessment (TSPA) model of results from the thermal-hydrological-chemical (THC) seepage model documented in ''Drift-Scale THC Seepage Model'' (BSC 2004 [DIRS 169856]). The selection has been conducted in accordance with ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Post-Processing Analysis for THC Seepage) Report Integration'' (BSC 2004 [DIRS 171334]). This technical work plan (TWP) was prepared in accordance with AP-2.27Q, ''Planning for Science Activities''. Section 1.2.3 of the TWP describes planning information pertaining to the technical scope, content, and management of this report. The post-processing analysis for THC seepage (THC-PPA) documented in this report provides a methodology for evaluating the near-field compositions of water and gas around a typical waste emplacement drift as these relate to the chemistry of seepage, if any, into the drift. The THC-PPA inherits the conceptual basis of the THC seepage model, but is an independently developed process. The relationship between the post-processing analysis and other closely related models, together with their main functions in providing seepage chemistry information for the Total System Performance Assessment for the License Application (TSPA-LA), are illustrated in Figure 1-1. The …
Date: September 29, 2004
Creator: SUN, Y.
Object Type: Report
System: The UNT Digital Library
Dynamic Response of Copper Subjected to Quasi-Isentropic, Gas-Gun Driven Loading (open access)

Dynamic Response of Copper Subjected to Quasi-Isentropic, Gas-Gun Driven Loading

A transmission electron microscopy study of quasi-isentropic high-pressure loading (peak pressures between 18 GPa and 52 GPa) of polycrystalline and monocrystalline copper was carried out. Deformation mechanisms and defect substructures at different pressures were analyzed. Current evidence suggests a deformation substructure consisting of twinning at the higher pressures and heavily dislocated laths and dislocation cells at the intermediate and lower pressures, respectively. Evidence of stacking faults at the intermediate pressures was also found. Dislocation cell sizes decreased with increasing pressure and increased with distance away from the surface of impact.
Date: September 29, 2005
Creator: Jarmakani, H.; McNaney, J. M.; Schneider, M. S.; Orlikowski, D.; Nguyen, J. H.; Kad, B. et al.
Object Type: Article
System: The UNT Digital Library
Laser-based profile and energy monitor for H beams (open access)

Laser-based profile and energy monitor for H beams

A beam profile and energy monitor for H{sup -} beams based on laser photoneutralization was built at Brookhaven National Laboratory (BNL)* for use on the High Intensity Neutrino Source (HMS) at Fermilab. An H{sup -} ion has a first ionization potential of 0.75eV and can be neutralized by light from a Nd:YAG laser ({lambda}=1064nm). To measure beam profiles, a narrow laser beam is stepped across the ion beam, removing electrons from the portion of the H{sup -} beam intercepted by the laser. These electrons are channeled into a Faraday cup by a curved axial magnetic field. To measure the energy distribution of the electrons, the laser position is fixed and the voltage on a screen in front of the Faraday cup is raised in small steps. We present a model which reproduces the measured energy spectrum from calculated beam energy and space-charge fields. Measurements are reported from experiments in the BNL linac MEBT at 750keV.
Date: September 29, 2008
Creator: Connolly, R.; Alessi, J.; Bellavia, S.; Dawson, C.; Degen, C.; Meng, W. et al.
Object Type: Article
System: The UNT Digital Library
TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media, V1.2.1 (open access)

TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media, V1.2.1

Coupled modeling of subsurface multiphase fluid and heat flow, solute transport, and chemical reactions can be applied to many geologic systems and environmental problems, including geothermal systems, diagenetic and weathering processes, subsurface waste disposal, acid mine drainage remediation, contaminant transport, and groundwater quality. TOUGHREACT has been developed as a comprehensive non-isothermal multi-component reactive fluid flow and geochemical transport simulator to investigate these and other problems. A number of subsurface thermo-physical-chemical processes are considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. TOUGHREACT can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The code can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions are considered, such as aqueous complexation, gas dissolution/exsolution, and cation exchange. Mineral dissolution/precipitation can take place subject to either local equilibrium or kinetic controls, with coupling to changes in porosity and permeability and capillary pressure in unsaturated systems. Chemical components can also be treated by linear adsorption and radioactive decay. The first version of the non-isothermal reactive geochemical transport code TOUGHREACT was developed (Xu and Pruess, 1998) by introducing reactive geochemistry into the …
Date: September 29, 2008
Creator: Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas & Pruess, Karsten
Object Type: Report
System: The UNT Digital Library
Status of DPIS development in BNL (open access)

Status of DPIS development in BNL

Direct injection scheme was proposed in 2000 at RIKEN in Japan. The first beam test was done at Tokyo Institute of Technology using a CO{sub 2} laser and an 80 MHz 4 vane RFQ in 2001, and further development continued in RIKEN. In 2006, all the experimental equipment were moved to BNL and a new development program was started. We report on our recent activities at BNL including the use of a frozen gas target for the laser source, low charge state ion beam production and a newly developed laser irradiation system.
Date: September 29, 2008
Creator: Okamura,M.; Tamura, J. & Kanesue, T.
Object Type: Article
System: The UNT Digital Library
Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns (open access)

Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns

Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, …
Date: September 29, 2008
Creator: Wishart, J. F.
Object Type: Article
System: The UNT Digital Library
Rap1 integrates tissue polarity, lumen formation, and tumorigenicpotential in human breast epithelial cells (open access)

Rap1 integrates tissue polarity, lumen formation, and tumorigenicpotential in human breast epithelial cells

Maintenance of apico-basal polarity in normal breast epithelial acini requires a balance between cell proliferation, cell death, and proper cell-cell and cell-extracellular matrix signaling. Aberrations in any of these processes can disrupt tissue architecture and initiate tumor formation. Here we show that the small GTPase Rap1 is a crucial element in organizing acinar structure and inducing lumen formation. Rap1 activity in malignant HMT-3522 T4-2 cells is appreciably higher than in S1 cells, their non-malignant counterparts. Expression of dominant-negative Rap1 resulted in phenotypic reversion of T4-2 cells, led to formation of acinar structures with correct apico-basal polarity, and dramatically reduced tumor incidence despite the persistence of genomic abnormalities. The resulting acini contained prominent central lumina not observed when other reverting agents were used. Conversely, expression of dominant-active Rap1 in T4-2 cells inhibited phenotypic reversion and led to increased invasiveness and tumorigenicity. Thus, Rap1 acts as a central regulator of breast architecture, with normal levels of activation instructing apical polarity during acinar morphogenesis, and increased activation inducing tumor formation and progression to malignancy.
Date: September 29, 2006
Creator: Itoh, Masahiko; Nelson, Celeste M.; Myers, Connie A. & Bissell,Mina J.
Object Type: Article
System: The UNT Digital Library
Ionic liquids for rechargeable lithium batteries (open access)

Ionic liquids for rechargeable lithium batteries

We have investigated possible anticipated advantages of ionic-liquid electrolytes for use in lithium-ion batteries. Thermal stabilities and phase behavior were studied by thermal gravimetric analysis and differential scanning calorimetry. The ionic liquids studied include various imidazoliumTFSI systems, pyrrolidiniumTFSI, BMIMPF{sub 6}, BMIMBF{sub 4}, and BMIMTf. Thermal stabilities were measured for neat ionic liquids and for BMIMBF{sub 4}-LiBF{sub 4}, BMIMTf-LiTf, BMIMTFSI-LiTFSI mixtures. Conductivities have been measured for various ionic-liquid lithium-salt systems. We show the development of interfacial impedance in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell and we report results from cycling experiments for a Li|BMIMBF{sub 4} + 1 mol/kg LIBF{sub 4}|C cell. The interfacial resistance increases with time and the ionic liquid reacts with the lithium electrode. As expected, imidazolium-based ionic liquids react with lithium electrodes. We seek new ionic liquids that have better chemical stabilities.
Date: September 29, 2005
Creator: Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz,John & Newman, John
Object Type: Report
System: The UNT Digital Library
Test Plan to Assess Fire Effects on the Function of an Engineered Surface Barrier (open access)

Test Plan to Assess Fire Effects on the Function of an Engineered Surface Barrier

Wildfire is a frequent perturbation in shrub steppe ecosystems, altering the flora, fauna, atmosphere, and soil of these systems. Research on the fire effects has focused mostly on natural ecosystems with essentially no attention on engineered systems like surface barriers. The scope of the project is to use a simulated wildfire to induce changes in an engineered surface barrier and document the effects on barrier performance. The main objective is to quantify the effects of burning and the resulting post-fire conditions on alterations in soil physical properties; hydrologic response, particularly the water balance; geochemical properties; and biological properties. A secondary objective is to use the lessons learned to maximize fire protection in the design of long-term monitoring systems based on electronic sensors. A simulated wildfire will be initiated, controlled and monitored at the 200-BP-1 barrier in collaboration with the Hanford Fire Department during the fall of 2008. The north half of the barrier will be divided into nine 12 x 12 m plots, each of which will be randomly assigned a fuel load of 2 kg m-2 or 4 kg m-2. Each plot will be ignited around the perimeter and flames allowed to carry to the centre. Any remaining unburned …
Date: September 29, 2008
Creator: Ward, Anderson L.; Berlin, Gregory T.; Cammann, Jerry W.; Leary, Kevin D. & Link, Steven O.
Object Type: Report
System: The UNT Digital Library
Plasma Performance Improvement with Lithium-Coated Plasma-Facing Components in NSTX (open access)

Plasma Performance Improvement with Lithium-Coated Plasma-Facing Components in NSTX

Lithium as a plasma-facing material has many attractive features, including a reduction in the recycling of hydrogenic species and the potential for withstanding high heat and neutron fluxes in fusion reactors. Recent NSTX experiments have shown, for the first time, significant and recurring benefits of lithium coatings on plasma-facing components (PFC's) to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. They included decreases in the plasma density and inductive flux consumption, and increases in the electron temperature, ion temperature, energy confinement time, and DD neutron rate. Extended periods of MHD quiescence were also achieved, and measurements of the visible emission from the lower divertor showed a reduction in the deuterium, carbon, and oxygen line emission. Other salient results with lithium evaporation included a broadening of the electron temperature profile, and changes in edge density gradients that benefited electron Bernstein wave coupling. There was also a reduction in ELM frequency and amplitude, followed by a period of complete ELM suppression. In general, it was observed that both the best and the average confinement occurred after lithium deposition and that the increase in WMHD occurs mostly through an increase in We. In …
Date: September 29, 2008
Creator: Kaita, R., et. al.
Object Type: Article
System: The UNT Digital Library
EBIS preinjector construction status (open access)

EBIS preinjector construction status

A new heavy ion preinjector is presently under construction at Brookhaven National Laboratory. This preinjector uses an Electron Beam Ion Source (EBIS), and an WQ and IH Linac, both operating at 100.625 MHz, to produce 2 MeV/u ions of any species for use, after further acceleration, at the Relativistic Heavy Ion Collider, and the NASA Space Radiation Laboratory. Among the increased capabilities provided by this preinjector are the ability to produce ions of any species, and the ability to switch between multiple species in 1 second, to simultaneously meet the needs of both physics programs. Fabrication of all major components for this preinjector is in process, with testing of the EBIS and WQ starting this year. The status of this construction is presented.
Date: September 29, 2008
Creator: Alessi,J.; Barton, D.; Beebe, E.; Bellavia, S.; Gould, O.; Kponou, A. et al.
Object Type: Article
System: The UNT Digital Library
Spheromak formation studies in SSPX (open access)

Spheromak formation studies in SSPX

We present results from the Sustained Spheromak Physics Experiment (SSPX) at LLNL, which has been built to study energy confinement in spheromak plasmas sustained for up to 2 ms by coaxial DC helicity injection. Peak toroidal currents as high as 600kA have been obtained in the 1m dia. (0.23m minor radius) device using injection currents between 200-400kA; these currents generate edge poloidal fields in the range of 0.2-0.4T. The internal field and current profiles are inferred from edge field measurements using the CORSICA code. Density and impurity control is obtained using baking, glow discharge cleansing, and titanium gettering, after which long plasma decay times ({tau} {ge} 1.5ms) are observed and impurity radiation losses are reduced from {approx}50% to <20% of the input energy. Thomson scattering measurements show peaked electron temperature and pressure profiles with T{sub e} (0){approx}120eV and {beta}{sub e}{approx}7%. Edge field measurements show the presence of n=1 modes during the formation phase, as has been observed in other spheromaks. This mode dies away during sustainment and decay so that edge fluctuation levels as low as 1% have been measured. These results are compared with numerical simulations using the NIMROD code.
Date: September 29, 2000
Creator: Hill, D. N.; Bulmer, R. H.; Cohen, B. L.; Hooper, E. B.; LoDestro, L. L.; Mattor, N. et al.
Object Type: Article
System: The UNT Digital Library
FINAL CLOSURE PLAN SURFACE IMPOUNDMENTS CLOSURE, SITE 300 (open access)

FINAL CLOSURE PLAN SURFACE IMPOUNDMENTS CLOSURE, SITE 300

Lawrence Livermore National Laboratory of the University of California (LLNL) operates two Class II surface impoundments that store wastewater that is discharged from a number of buildings located on the Site 300 Facility (Site 300). The wastewater is the by-product of explosives processing. Reduction in the volume of water discharged from these buildings over the past several years has significantly reduced the wastewater storage needs. In addition, the impoundments were constructed in 1984, and the high-density polyethylene (HDPE) geomembrane liners are nearing the end of their service life. The purpose of this project is to clean close the surface impoundments and provide new wastewater storage using portable, above ground storage tanks at six locations. The tanks will be installed prior to closure of the impoundments and will include heaters for allowing evaporation during relatively cool weather. Golder Associates (Golder) has prepared this Final Closure Plan (Closure Plan) on behalf of LLNL to address construction associated with the clean closure of the impoundments. This Closure Plan complies with State Water Resources Control Board (SWRCB) Section 21400 of the California Code of Regulations Title 27 (27 CCR {section}21400). As required by these regulations and guidance, this Plan provides the following information: (1) …
Date: September 29, 2004
Creator: Lane, J E; Scott, J E & Mathews, S E
Object Type: Report
System: The UNT Digital Library
Recent Site-Wide Transport Modeling Related to the Carbon Tetrachloride Plume at the Hanford Site (open access)

Recent Site-Wide Transport Modeling Related to the Carbon Tetrachloride Plume at the Hanford Site

Carbon tetrachloride transport in the unconfined aquifer system at the Hanford Site has been the subject of follow-on studies since the Carbon Tetrachloride Innovative Treatment Remediation Demonstration (ITRD) Program was completed in FY 2002. These scoping analyses were undertaken to provide support for strategic planning and guidance for the more robust modeling needed to obtain a final record of decision (ROD) for the carbon tetrachloride plume in the 200 West Area. This report documents the technical approach and the results of these follow-on, site-wide scale-modeling efforts. The existing site-wide groundwater model was used in this effort. The work extended that performed as part of the ITRD modeling study in which a 200 West Area scale submodel was developed to examine arrival concentrations at an arbitrary boundary between the 200 E and 200 W areas. These scoping analyses extended the analysis to predict the arrival of the carbon tetrachloride plume at the Columbia River. The results of these analyses illustrate the importance of developing field-scale estimates of natural attenuation parameters, abiotic degradation rate and soil/water equilibrium sorption coefficient, for carbon tetrachloride. With these parameters set to zero, carbon tetrachloride concentrations will exceed the compliance limit of 5 {micro}g/L outside the 200 …
Date: September 29, 2004
Creator: Bergeron, Marcel P. & Cole, C R.
Object Type: Report
System: The UNT Digital Library