Language

Surface species formed by the adsorption and dissociation of water molecules on Ru(0001) surface containing a small coverage of carbon atoms studied by scanning tunneling microscopy (open access)

Surface species formed by the adsorption and dissociation of water molecules on Ru(0001) surface containing a small coverage of carbon atoms studied by scanning tunneling microscopy

The adsorption and dissociation of water on a Ru(0001) surface containing a small amount ({le} 3 %) of carbon impurities was studied by scanning tunneling microscopy (STM). Various surface species are formed depending on the temperature. These include molecular H{sub 2}O, H{sub 2}O-C complexes, H, O, OH and CH. Clusters of either pure H{sub 2}O or mixed H{sub 2}O-OH species are also formed. Each of these species produces a characteristic contrast in the STM images and can be identified by experiment and by ab initio total energy calculations coupled with STM image simulations. Manipulation of individual species via excitation of vibrational modes with the tunneling electrons has been used as supporting evidence.
Date: April 26, 2008
Creator: UCB, Dept of Materials Science and Engineering
Object Type: Article
System: The UNT Digital Library
Cobra-IE Evaluation by Simulation of the NUPEC BWR Full-Size Fine-Mesh Bundle Test (BFBT) (open access)

Cobra-IE Evaluation by Simulation of the NUPEC BWR Full-Size Fine-Mesh Bundle Test (BFBT)

The COBRA-IE computer code is a thermal-hydraulic subchannel analysis program capable of simulating phenomena present in both PWRs and BWRs. As part of ongoing COBRA-IE assessment efforts, the code has been evaluated against experimental data from the NUPEC BWR Full-Size Fine-Mesh Bundle Tests (BFBT). The BFBT experiments utilized an 8 x 8 rod bundle to simulate BWR operating conditions and power profiles, providing an excellent database for investigation of the capabilities of the code. Benchmarks performed included steady-state and transient void distribution, single-phase and two-phase pressure drop, and steady-state and transient critical power measurements. COBRA-IE effectively captured the trends seen in the experimental data with acceptable prediction error. Future sensitivity studies are planned to investigate the effects of enabling and/or modifying optional code models dealing with void drift, turbulent mixing, rewetting, and CHF.
Date: April 26, 2006
Creator: Burns, C. J. and Aumiler, D. L.
Object Type: Article
System: The UNT Digital Library
Remaining Sites Verification Package for the 1607-F3 Sanitary Sewer System, Waste Site Reclassification Form 2006-047 (open access)

Remaining Sites Verification Package for the 1607-F3 Sanitary Sewer System, Waste Site Reclassification Form 2006-047

The 1607-F3 waste site is the former location of the sanitary sewer system that supported the 182-F Pump Station, the 183-F Water Treatment Plant, and the 151-F Substation. The sanitary sewer system included a septic tank, drain field, and associated pipeline, all in use between 1944 and 1965. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.
Date: April 26, 2007
Creator: Dittmer, L. M.
Object Type: Report
System: The UNT Digital Library
Remarkable Strontium B-Site Occupancy in FerroelectricPb(Zr1-xTix)O3 Solid Solutions Doped with Cryolite-Type StrontiumNiobate (open access)

Remarkable Strontium B-Site Occupancy in FerroelectricPb(Zr1-xTix)O3 Solid Solutions Doped with Cryolite-Type StrontiumNiobate

New high-performance ferroelectric materials based on Pb(Zr{sub 1-x}Ti{sub x})O{sub 3} (PZT) that are doped with cryolite-type strontium niobate (SNO, Sr{sub 4}(Sr{sub 2-2y/3}Nb{sub 2+2y/3})O{sub 11+y}V{sub 0,1-y} with 0 {le} y {le} 1), hence denoted PZT:SNO, and their microscopic structure are described. The combination of exceptional piezoelectric properties, i.e. a piezoelectric strain constant of d{sub 33} {approx} 760 pm/V, with excellent stability and degradation resistance makes ferroelectric PZT:SNO solid solutions very attractive for use in novel and innovative piezoelectric actuator and transducer applications. Extended X-ray absorption fine-structure (EXAFS) analyses of PZT:SNO samples revealed that {approx}10 % of the Sr cations occupy the nominal B-sites of the perovskite-type PZT host lattice. This result was supported by EXAFS analyses of both a canonical SrTiO{sub 3} perovskite and two SNO model and reference compounds. Fit models that do not account for Sr cations on B-sites were ruled out. A clear Sr-Pb peak in Fourier transformed EXAFS data visually confirmed this structural model. The generation of temporary oxygen vacancies and the intricate defect chemistry induced by SNO-doping of PZT are crucial for the exceptional materials properties exhibited by PZT:SNO materials.
Date: April 26, 2007
Creator: Feltz, A.; Schmidt-Winkel, P.; Schossman, M.; Booth, C.H. & Albering, J.
Object Type: Article
System: The UNT Digital Library
Visualization of Force Fields in Protein StructurePrediction (open access)

Visualization of Force Fields in Protein StructurePrediction

The force fields used in molecular computational biology are not mathematically defined in such a way that their mathematical representation would facilitate the straightforward application of volume visualization techniques. To visualize energy, it is necessary to define a spatial mapping for these fields. Equipped with such a mapping, we can generate volume renderings of the internal energy states in a molecule. We describe our force field, the spatial mapping that we used for energy, and the visualizations that we produced from this mapping. We provide images and animations that offer insight into the computational behavior of the energy optimization algorithms that we employ.
Date: April 26, 2005
Creator: Crawford, Clark; Kreylos, Oliver; Hamann, Bernd & Crivelli, Silvia
Object Type: Article
System: The UNT Digital Library
Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico Semiannual Progress Report: Year 3 (open access)

Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico Semiannual Progress Report: Year 3

The principal research effort for the first half of Year 3 of the project has been resource assessment. Emphasis has been on estimating the total volume of hydrocarbons generated and the potential amount of this resource that is classified as deep (>15,000 ft) gas in the North Louisiana Salt Basin, the Mississippi Interior Salt Basin, the Manila Subbasin and the Conecuh Subbasin. The amount of this resource that has been expelled, migrated and entrapped is also the focus of the first half of Year 3 of this study.
Date: April 26, 2006
Creator: Mancini, Ernest A.; Aharon, Paul; Goddard, Donald A. & Barnaby, Roger
Object Type: Report
System: The UNT Digital Library
Development of LLNL Methodology for Nonnuclear Safety Bases (open access)

Development of LLNL Methodology for Nonnuclear Safety Bases

The objective of this paper is to introduce the process and philosophies used to develop LLNL methodology for performing nonnuclear safety bases. Our former approach needed revision in order to implement the new Work Smart Standard (WSS), 'Safety Basis Requirements for Nonnuclear Facilities at Lawrence Livermore National Laboratory Site Specific Standard' (UCRL-ID-150214), approved in 2003 and revised January, 2004. This work relates directly to the following workshop theme: 'Improvements in Chemical, Biological, and Non-nuclear Safety analysis.' A requirements document, Environmental Safety and Health Manual, Document 3.1 provides safety bases methodology 'how-to' for LLNL personnel. This methodology document had to undergo a major revision, and essentially was completely re-written, since the nonnuclear requirements underwent a major change due to the new standard. The new methodology was based on a graded approach respective to risk level for each hazard type and facility classification. The development process included input from a cross-section of representatives of LLNL organizations at every step in the process. The initial methodology was tested in a pilot project that resulted in completed safety basis analyses and documentation for a major facility at LLNL. Feedback from the pilot was used to refine the methodology. The new methodology promotes a graded …
Date: April 26, 2004
Creator: van Warmerdam, C M & Pinkston, D M
Object Type: Article
System: The UNT Digital Library
EMSL 2005 Annual Report (open access)

EMSL 2005 Annual Report

Overview This 2005 EMSL Annual Report describes the research and accomplishments of staff and users of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), located in Richland, Washington. Essential to the success of resolving environmental and other critical scientific issues important to the U.S. Department of Energy (DOE) is the implementation of EMSL Grand Challenges, which are research projects that address complex, large-scale scientific and engineering problems using multi-institutional teams with high-performance scientific resources. Mission EMSL strives for simultaneous excellence in 1) high-impact science and marquee capabilities, 2) outstanding management and operations, and 3) exceptional user outreach and services, and uses these tenets to deliver its mission and implement its strategy. The central focus of EMSL’s strategy is delivery on the mission of the scientific user facility. In addition to its mission, EMSL has a vision and strategy that show where the user facility intends to be in the next 10 years and the progress that will be made during the next 5 years, respectively. The management of EMSL, together with DOE, its Pacific Northwest Site Office, and Pacific Northwest National Laboratory (PNNL) management, has developed the following mission statement for EMSL. EMSL, a national scientific user facility at …
Date: April 26, 2006
Creator: Foster, Nancy S.; Anderson, Gordon A. & Campbell, Allison A.
Object Type: Report
System: The UNT Digital Library
Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry: Spray Simulations (open access)

Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry: Spray Simulations

The Terascale High-Fidelity Simulations of Turbulent Combustion (TSTC) project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of the approach is direct numerical simulation (DNS) featuring the highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. Under this component of the TSTC program the simulation code named S3D, developed and shared with coworkers at Sandia National Laboratories, has been enhanced with new numerical algorithms and physical models to provide predictive capabilities for turbulent liquid fuel spray dynamics. Major accomplishments include improved fundamental understanding of mixing and auto-ignition in multi-phase turbulent reactant mixtures and turbulent fuel injection spray jets.
Date: April 26, 2009
Creator: Rutland, Christopher J.
Object Type: Report
System: The UNT Digital Library
A Measurement of the B ---> Eta/C K Branching Fraction Using the BaBar Detector (open access)

A Measurement of the B ---> Eta/C K Branching Fraction Using the BaBar Detector

The branching fraction is measured for the decay channels B{sup 0} {yields} {eta}{sub c}K{sub S}{sup 0} and B{sup +} {yields} {eta}{sub c}K{sup +} where {eta}{sub c} {yields} K{bar K}{pi}, using the BABAR detector. The {eta}{sub c} {yields} K{sub S}{sup 0}K{sup +}{pi}{sup -} and {eta}{sub c} {yields} K{sup +}K{sup -}{pi}{sup 0} decay channels are used, including non-resonant decays and possibly those through intermediate resonances.
Date: April 26, 2006
Creator: Jackson, Frank
Object Type: Report
System: The UNT Digital Library
Final Report 2007: DOE-FG02-87ER60561 (open access)

Final Report 2007: DOE-FG02-87ER60561

This project involved a multi-faceted approach to the improvement of techniques used in Positron Emission Tomography (PET), from radiochemistry to image processing and data analysis. New methods for radiochemical syntheses were examined, new radiochemicals prepared for evaluation and eventual use in human PET studies, and new pre-clinical methods examined for validation of biochemical parameters in animal studies. The value of small animal PET imaging in measuring small changes of in vivo biochemistry was examined and directly compared to traditional tissue sampling techniques. In human imaging studies, the ability to perform single experimental sessions utilizing two overlapping injections of radiopharmaceuticals was tested, and it was shown that valid biochemical measures for both radiotracers can be obtained through careful pharmacokinetic modeling of the PET emission data. Finally, improvements in reconstruction algorithms for PET data from small animal PET scanners was realized and these have been implemented in commercial releases. Together, the project represented an integrated effort to improve and extend all basic science aspects of PET imaging at both the animal and human level.
Date: April 26, 2007
Creator: Kilbourn, Michael R
Object Type: Report
System: The UNT Digital Library
Fast Curing of Composite Wood Products (open access)

Fast Curing of Composite Wood Products

The overall objective of this program is to develop low temperature curing technologies for UF and PF resins. This will be accomplished by: • Identifying the rate limiting UF and PF curing reactions for current market resins; • Developing new catalysts to accelerate curing reactions at reduced press temperatures and times. In summary, these new curing technologies will improve the strength properties of the composite wood products and minimize the detrimental effects of wood extractives on the final product while significantly reducing energy costs for wood composites. This study is related to the accelerated curing of resins for wood composites such as medium density fiberboard (MDF), particle board (PB) and oriented strandboard (OSB). The latter is frequently manufactured with a phenol-formaldehyde resin whereas ureaformaldehyde (UF) resins are usually used in for the former two grades of composite wood products. One of the reasons that hinder wider use of these resins in the manufacturing of wood composites is the slow curing speed as well as inferior bondability of UF resin. The fast curing of UP and PF resins has been identified as an attractive process development that would allow wood to be bonded at higher moisture contents and at lower press …
Date: April 26, 2006
Creator: Ragauskas, Dr. Arthur J.
Object Type: Report
System: The UNT Digital Library
Multispectral X-ray Imagaing for Core Temperature and Density Maps Retrieval in Direct Drive Implosions (open access)

Multispectral X-ray Imagaing for Core Temperature and Density Maps Retrieval in Direct Drive Implosions

We report on the experiments aimed at obtaining core temperature and density maps in direct drive implosions at the OMEGA Laser Facility using multi-monochromatic X-ray imagers. These instruments use an array of pinholes and a flat multilayer mirror to provide unique multi-spectral images distributed over a wide spectral range. Using Argon as a dopant in the DD-filled plastic shells produces emission images in the Ar He-b and Ly-b spectral regions. These images allow the retrieval of temperature and density maps of the plasma. We deployed three identical multi-monochromatic X-ray imagers in a quasi-orthogonal line-of-sight configuration to allow tomographic reconstruction of the structure of the imploding core.
Date: April 26, 2006
Creator: Tommasini, R; Koch, J A; Izumi, N; Welser, L A; Mancini, R C; Delettrez, J et al.
Object Type: Article
System: The UNT Digital Library
Measurement and Control of Glass Feedstocks (open access)

Measurement and Control of Glass Feedstocks

ERCo has developed a laser-based technology for rapid compositional measurements of batch, real-time sorting of cullet, and in-situ measurements of molten glass. This technology, termed LIBS (Laser Induced Breakdown Spectroscopy) can determine whether or not the batch was formulated accurately in order to control glass quality. It can also be used to determine if individual batch ingredients are within specifications. In the case of cullet feedstocks, the sensor can serve as part of a system to sort cullet by color and ensure that it is free of contaminants. In-situ compositional measurements of molten glass are achieved through immersing a LIBS probe directly into the melt in a glass furnace. This technology has been successfully demonstrated in ERCo’s LIBS laboratory for batch analysis, cullet sorting, and glass melt measurements. A commercial batch analyzer has been operating in a PPG fiberglass plant since August 2004. LIBS utilizes a highly concentrated laser pulse to rapidly vaporize and ionize nanograms of the material being studied. As this vapor cools, it radiates light at specific wavelengths corresponding to the elemental constituents (e.g. silicon, aluminum, iron) of the material. The strengths of the emissions correlate to the concentrations of each of the elemental constituents. By collecting …
Date: April 26, 2007
Creator: Weisberg, Arel
Object Type: Report
System: The UNT Digital Library
Spin Physics Center (open access)

Spin Physics Center

None
Date: April 26, 2005
Creator: Krisch, Alan D.
Object Type: Report
System: The UNT Digital Library
Biogeophysical effects of CO2-fertilization on global climate (open access)

Biogeophysical effects of CO2-fertilization on global climate

CO{sub 2}-fertilization affects plant growth, which modifies surface physical properties, altering the surface albedo, and fluxes of sensible and latent heat. We investigate how such CO{sub 2}-fertilization effects on vegetation and surface properties would affect the climate system. Using a global three-dimensional climate-carbon model that simulates vegetation dynamics, we compare two multi-century simulations: a ''Control'' simulation with no emissions, and a ''Physiol-noGHG'' simulation where physiological changes occur as a result of prescribed CO{sub 2} emissions, but where CO{sub 2}-induced greenhouse warming is not included. In our simulations, CO{sub 2}-fertilization produces warming; we obtain an annual- and global-mean warming of about 0.65 K (and land-only warming of 1.4 K) after 430 years. This century-scale warming is mostly due to a decreased surface albedo associated with the expansion of the Northern Hemisphere boreal forests. On decadal time scales, the CO{sub 2} uptake by afforestation should produce a cooling effect that exceeds this albedo-based warming; but if the forests remain in place, the CO{sub 2}-enhanced-greenhouse effect would diminish as the ocean equilibrates with the atmosphere, whereas the albedo effect would persist. Thus, on century time scales, there is the prospect for net warming from CO{sub 2}-fertilization of the land biosphere. Further study is …
Date: April 26, 2006
Creator: Bala, G.; Caldeira, K.; Mirin, A.; Wickett, M.; Delire, C. & Phillips, T. J.
Object Type: Article
System: The UNT Digital Library
Study of Transport Behavior and Conversion Efficiency in Pillar Structured Neutron Detectors (open access)

Study of Transport Behavior and Conversion Efficiency in Pillar Structured Neutron Detectors

Room temperature, high efficiency and scalable radiation detectors can be realized by manipulating materials at the micro scale. With micro-semiconductor-pillars, we will advance the thermal neutron detection efficiency of semiconductor detectors to over 70% with 50 mm in detector thickness. New material science, new transport behavior, neutron to alpha conversion dynamics and their relationship with neutron detection will be discovered with the proposed structures.
Date: April 26, 2007
Creator: Nikolic, R
Object Type: Report
System: The UNT Digital Library
Horizontal Drop of 21- PWR Waste Package (open access)

Horizontal Drop of 21- PWR Waste Package

The objective of this calculation is to determine the structural response of the waste package (WP) dropped horizontally from a specified height. The WP used for that purpose is the 21-Pressurized Water Reactor (PWR) WP. The scope of this document is limited to reporting the calculation results in terms of stress intensities. The information provided by the sketches (Attachment I) is that of the potential design of the type of WP considered in this calculation, and all obtained results are valid for that design only. This calculation is associated with the WP design and was performed by the Waste Package Design group in accordance with the ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 16). AP-3.12Q, ''Calculations'' (Ref. 11) is used to perform the calculation and develop the document. The sketches attached to this calculation provide the potential dimensions and materials for the 21-PWR WP design.
Date: April 26, 2001
Creator: Scheider, A.K.
Object Type: Report
System: The UNT Digital Library
Axisymmetric Tandem Mirror Magnetic Fusion Energy Power Plant with Thick Liquid-Walls (open access)

Axisymmetric Tandem Mirror Magnetic Fusion Energy Power Plant with Thick Liquid-Walls

A fusion power plant is described that utilizes a new version of the tandem mirror device including spinning liquid walls. The magnetic configuration is evaluated with an axisymmetric equilibrium code predicting an average beta of 60%. The geometry allows a flowing molten salt, (flibe-Li{sub 2}BeF{sub 4}), which protects the walls and structures from damage arising from neutrons and plasma particles. The free surface between the liquid and the burning plasma is heated by bremsstrahlung radiation, line radiation, and by neutrons. The temperature of the free surface of the liquid is calculated, and then the evaporation rate is estimated from vapor-pressure data. The allowed impurity concentration in the burning plasma is taken as 1% fluorine, which gives a 17% reduction in the fusion power owing to D/T fuel dilution, with F line-radiation causing minor power degradation. The end leakage power density of 0.6 MW/m{sup 2} is readily handled by liquid jets. The tritium breeding is adequate with natural lithium. A number of problem areas are identified that need further study to make the design more self-consistent and workable; however, the simple geometry and the use of liquid walls promise the cost of power competitive with that from fission and coal.
Date: April 26, 2006
Creator: Moir, R W & Rognlien, T D
Object Type: Article
System: The UNT Digital Library
PROCEEDINGS FROM RIKEN-BNL RESEARCH CENTER WORKSHOP: PARITY-VIOLATING SPIN ASYMMETRIES AT RHIC. (open access)

PROCEEDINGS FROM RIKEN-BNL RESEARCH CENTER WORKSHOP: PARITY-VIOLATING SPIN ASYMMETRIES AT RHIC.

The RHIC spin program is now fully underway. Several runs have been successfully completed and are producing exciting first results. Luminosity and polarization have improved remarkably and promising advances toward the higher RHIC energy of {radical}s = 500 GeV have been made. At this energy in particular, it will become possible to perform measurements of parity-violating spin asymmetries. Parity violation occurs in weak interactions, and in combination with the unique polarization capabilities at RHIC fascinating new opportunities arise. In particular, parity-violating single- and double-spin asymmetries give new insights into nucleon structure by allowing probes of up and down sea and anti-quark polarizations. Such measurements at RHIC are a DOE performance milestone for the year 2013 and are also supported by a very large effort from RIKEN. With transverse polarization, charged-current interactions may be sensitive to the Sivers effect. Parity-violating effects at RHIC have been proposed even as probes of physics beyond the Standard Model. With the era of measurements of parity-violating spin asymmetries at RHIC now rapidly approaching, we had proposed a small workshop that would bring together the main experts in both theory and experiment. We are very happy that this worked out. The whole workshop contained 17 formal …
Date: April 26, 2007
Creator: Vogelsang, W.; Perdekamp, M. & Surrow, B.
Object Type: Report
System: The UNT Digital Library
Mission Need Statement: Calcine Disposition Project Major Systems Acquisition Project (open access)

Mission Need Statement: Calcine Disposition Project Major Systems Acquisition Project

This document identifies the need to establish the Calcine Disposition Project to determine and implement the final disposition of calcine including characterization, retrieval, treatment (if necessary), packaging, loading, onsite interim storage pending shipment to a repository or interim storage facility, and disposition of related facilities.
Date: April 26, 2007
Creator: Beck, J. T.
Object Type: Report
System: The UNT Digital Library
Control of Urania Crystallite Size by HMTA-Urea Reactions in the Internal Gelation Process for Preparing (U, Pu)O<sub>2</sub>Fuel Kernels (open access)

Control of Urania Crystallite Size by HMTA-Urea Reactions in the Internal Gelation Process for Preparing (U, Pu)O<sub>2</sub>Fuel Kernels

In the development of (U,Pu)O{sub 2} kernels by the internal gelation process for the Direct Press Spheroidized process at Oak Ridge National Laboratory, a novel crystal growth step was discovered that made it possible to prepare calcined porous kernels that could be used as direct-press feed for Fast Breeder Reactor pellet fabrication. High-quality pellets were prepared that were near theoretical density and that (upon examination) revealed no evidence of sphere remnants. The controlled crystal growth step involved using hexamethylenetetramine (HMTA)-urea stock solutions that were boiled for 60 min or less. Before this discovery, all the other crystal growth steps (when utilized) could reduce the tap density to only {approx}1.3 g/cm{sup 3}, which was not sufficiently low for use in ideal pellet pressing. The use of the boiled HMTA-urea solution allowed the tap density to be lowered to 0.93 g/cm{sup 3}, with the ideal density being about 1.0 g/cm{sup 3}. This report describes the development of this technology and its scaleup.
Date: April 26, 2005
Creator: Collins, J. L.
Object Type: Report
System: The UNT Digital Library
TIME RESOLVED X-RAY SPOT DIAGNOSTIC (open access)

TIME RESOLVED X-RAY SPOT DIAGNOSTIC

A diagnostic was developed for the determination of temporal history of an X-ray spot. A pair of thin (0.5 mm) slits image the x-ray spot to a fast scintillator which is coupled to a fast detector, thus sampling a slice of the X-Ray spot. Two other scintillator/detectors are used to determine the position of the spot and total forward dose. The slit signal is normalized to the dose and the resulting signal is analyzed to get the spot size. The position information is used to compensate for small changes due to spot motion and misalignment. The time resolution of the diagnostic is about 1 ns and measures spots from 0.5 mm to over 3 mm. The theory and equations used to calculate spot size and position are presented, as well as data. The calculations assume a symmetric, Gaussian spot. The spot data is generated by the ETA II accelerator, a 2kA, 5.5 MeV, 60 ns electron beam focused on a Tantalum target. The spot generated is typically about 1 mm FWHM. Comparisons are made to an X-ray pinhole camera which images the X-Ray spot (in 2D) at four time slices.
Date: April 26, 2005
Creator: Richardson, R.; Guethlein, G.; Falabella, S.; Chambers, F.; Raymond, B. & Weir, J.
Object Type: Article
System: The UNT Digital Library
Dual Beam FIB for Imaging, Nano-Sectioning and Sample Preparation of Spores: Initial Results. (open access)

Dual Beam FIB for Imaging, Nano-Sectioning and Sample Preparation of Spores: Initial Results.

Results from the first use of Focused Ion Beam (FIB) technology to section Bacillus spores at LLNL in a dual-beam (electron and ion) instrument is presented and discussed. With the use of a dual-beam instrument, high resolution imaging of single spores using low voltage scanning electron microscopy followed by FIB sectioning, SEM imaging of internal structure of the same spore is demonstrated to be possible. Additionally, FIB is shown to be able to precisely micro-machine spores thus potentially facilitating micro-scale experiments on single spores.
Date: April 26, 2004
Creator: Wall, M A; Fluss, M J & Schaldach, C
Object Type: Report
System: The UNT Digital Library