54 Matching Results

Results open in a new window/tab.

Investigation of Selected Optically-Active Nanosystems Fashioned using Ion Implantation (open access)

Investigation of Selected Optically-Active Nanosystems Fashioned using Ion Implantation

Opto-electronic semiconductor technology continues to grow at an accelerated pace, as the industry seeks to perfect devices such as light emitting diodes for purposes of optical processing and communication. A strive for greater efficiency with shrinking device dimensions, continually pushes the technology from both a design and materials aspect. Nanosystems such a quantum dots, also face new material engineering challenges as they enter the realm of quantum mechanics, with each system and material having markedly different electronic properties. Traditionally, the semiconductor industry has focused on materials such Group II-VI and III-V compounds as the basis material for future opto-electronic needs. Unfortunately, these material systems can be expensive and have difficulties integrating into current Si-based technology. The industry is reluctant to leave silicon due in part to silicon's high quality oxide, and the enormous amount of research invested into silicon based circuit fabrication. Although recently materials such as GaN are starting to dominate the electro-optical industry since a Si-based substitute has not been found. The purpose of the dissertation was to examine several promising systems that could be easily integrated into current Si-based technology and also be produced using simple inexpensive fabrication techniques such ion implantation. The development of optically active …
Date: May 2006
Creator: Mitchell, Lee
System: The UNT Digital Library
Ion-Induced Damage In Si: A Fundamental Study of Basic Mechanisms over a Wide Range of Implantation Conditions (open access)

Ion-Induced Damage In Si: A Fundamental Study of Basic Mechanisms over a Wide Range of Implantation Conditions

A new understanding of the damage formation mechanisms in Si is developed and investigated over an extended range of ion energy, dose, and irradiation temperature. A simple model for dealing with ion-induced damage is proposed, which is shown to be applicable over the range of implantation conditions. In particular the concept of defect "excesses" will be discussed. An excess exists in the lattice when there is a local surplus of one particular type of defect, such as an interstitial, over its complimentary defect (i.e., a vacancy). Mechanisms for producing such excesses by implantation will be discussed. The basis of this model specifies that accumulation of stable lattice damage during implantation depends upon the excess defects and not the total number of defects. The excess defect model is validated by fundamental damage studies involving ion implantation over a range of conditions. Confirmation of the model is provided by comparing damage profiles after implantation with computer simulation results. It will be shown that transport of ions in matter (TRIM) can be used effectively to model the ion-induced damage profile, i.e. excess defect distributions, by a simple subtraction process in which the spatially correlated defects are removed, thereby simulating recombination. Classic defect studies …
Date: May 2006
Creator: Roth, Elaine Grannan
System: The UNT Digital Library
Magnetotransport Properties of  AlxIn1-xAsySb1-y/GaSb and Optical Properties of GaAs1-xSbx (open access)

Magnetotransport Properties of AlxIn1-xAsySb1-y/GaSb and Optical Properties of GaAs1-xSbx

Multilayer structures of AlxIn1-xAsySb1-y/GaSb (0.37 £ x £ 0.43, 0.50 £ y £ 0.52), grown by molecular beam epitaxy on GaSb (100) substrates were characterized using variable temperature Hall and Shubnikov-de Haas techniques. For nominally undoped structures both p and n-type conductivity was observed. The mobilities obtained were lower than those predicted by an interpolation method using the binary alloys; therefore, a detailed analysis of mobility versus temperature data was performed to extract the appropriate scattering mechanisms. For p-type samples, the dominant mechanism was ionized impurity scattering at low temperatures and polar optical phonon scattering at higher temperatures. For n-type samples, ionized impurity scattering was predominant at low temperatures, and electron-hole scattering dominated for both the intermediate and high temperature range. Analyses of the Shubnikov-de Haas data indicate the presence of 2-D carrier confinement consistent with energy subbands in GaAszSb1-z potential wells. Epilayers of GaAs1-xSbx (0.19<x<0.71), grown by MBE on semi-insulating GaAs with various substrate orientations, were studied by absorption measurements over the temperature range of 4-300 K. The various substrate orientations were chosen to induce different degrees of spontaneous atomic ordering. The temperature dependence of the energy gap (Eg) for each of these samples was modeled using three semi-empirical …
Date: May 2003
Creator: Lukic- Zrnic, Reiko
System: The UNT Digital Library
Maxwell's Equations from Electrostatics and Einstein's Gravitational Field Equation from Newton's Universal Law of Gravitation Using Tensors (open access)

Maxwell's Equations from Electrostatics and Einstein's Gravitational Field Equation from Newton's Universal Law of Gravitation Using Tensors

Maxwell's equations are obtained from Coulomb's Law using special relativity. For the derivation, tensor analysis is used, charge is assumed to be a conserved scalar, the Lorentz force is assumed to be a pure force, and the principle of superposition is assumed to hold. Einstein's gravitational field equation is obtained from Newton's universal law of gravitation. In order to proceed, the principle of least action for gravity is shown to be equivalent to the maximization of proper time along a geodesic. The conservation of energy and momentum is assumed, which, through the use of the Bianchi identity, results in Einstein's field equation.
Date: May 2004
Creator: Burns, Michael E.
System: The UNT Digital Library
Mechanism and the Effect of Microwave-Carbon Nanotube Interaction (open access)

Mechanism and the Effect of Microwave-Carbon Nanotube Interaction

A series of experimental results about unusual heating of carbon nanotubes by microwaves is analyzed in this dissertation. Two of vibration types, cantilever type (one end is fixed and the other one end is free), the second type is both ends are fixed, have been studied by other people. A third type of forced vibration of carbon nanotubes under an alternating electromagnetic field is examined in this paper. Heating of carbon nanotubes (CNTs) by microwaves is described in terms of nonlinear dynamics of a vibrating nanotube. Results from the model provide a way to understand several observations that have been made. It is shown that transverse vibrations of CNTs during microwave irradiation can be attributed to transverse parametric resonance, as occurs in the analysis of Melde's experiment on forced longitudinal vibrations of a stretched elastic string. For many kinds of carbon nanotubes (SWNT, DWNT, MWNT, ropes and strands) the resonant parameters are found to be located in an unstable region of the parameter space of Mathieu's equation. Third order wave equations are used to qualitatively describe the effects of phonon-phonon interactions and energy transfer from microwaves to CNTs. This result provides another way to input energy from microwaves to carbon …
Date: December 2005
Creator: Ye, Zhou
System: The UNT Digital Library
Microscopic Foundations of Thermodynamics and Generalized Statistical Ensembles (open access)

Microscopic Foundations of Thermodynamics and Generalized Statistical Ensembles

This dissertation aims at addressing two important theoretical questions which are still debated in the statistical mechanical community. The first question has to do with the outstanding problem of how to reconcile time-reversal asymmetric macroscopic laws with the time-reversal symmetric laws of microscopic dynamics. This problem is addressed by developing a novel mechanical approach inspired by the work of Helmholtz on monocyclic systems and the Heat Theorem, i.e., the Helmholtz Theorem. By following a line of investigation initiated by Boltzmann, a Generalized Helmholtz Theorem is stated and proved. This theorem provides us with a good microscopic analogue of thermodynamic entropy. This is the volume entropy, namely the logarithm of the volume of phase space enclosed by the constant energy hyper-surface. By using quantum mechanics only, it is shown that such entropy can only increase. This can be seen as a novel rigorous proof of the Second Law of Thermodynamics that sheds new light onto the arrow of time problem. The volume entropy behaves in a thermodynamic-like way independent of the number of degrees of freedom of the system, indicating that a whole thermodynamic-like world exists at the microscopic level. It is also shown that breaking of ergodicity leads to microcanonical …
Date: May 2008
Creator: Campisi, Michele
System: The UNT Digital Library

Microstructure and Electronic Structures of Er-Doped Si Nano-particles Synthesized by Vapor Phase Pyrolysis

Access: Use of this item is restricted to the UNT Community
Si nanoparticles are new prospective optoelectronic materials. Unlike bulk Si cry-stals, Si nanoparticles display intriguing room-temperature photoluminescence. A major challenge in the fabrication of Si nanoparticles is the control of their size distribution. The rare-earth element Er has unique photo emission properties, including low pumping power, and a temperature independent, sharp spectrum. The emission wavelength matches the transmission window of optical fibers used in the telecommunications industry. Therefore, the study of Er-doped Si nanoparticles may have practical significance. The goals of the research described in this dissertation are to investigate vapor phase pyrolysis methods and to characterize the microstructure and associated defects, particles size distributions and photoluminescence efficiencies of doped and undoped Si nanoparticles using analytical transmission electron microscopy, high resolution electron microscopy, and optical spectroscopy. Er-doped and undoped Si nanoparticles were synthesized via vapor-phase pyrolysis of disilane at Texas Christian University. To achieve monodisperse size distributions, a process with fast nucleation and slow growth was employed. Disilane was diluted to 0.48% with helium. A horizontal pyrolysis oven was maintained at a temperature of 1000 °C. The oven length was varied from 1.5 cm to 6.0 cm to investigate the influence of oven length on the properties of the nanoparticles. …
Date: May 2000
Creator: Chen, Yandong
System: The UNT Digital Library

Microwave Cavity Test for Superconductivity

Access: Use of this item is restricted to the UNT Community
The first part of this paper describes the Meissner effect in superconductors which serves as the most definitive evidence for superconductivity. It is shown that the microwave perturbation technique may be used to demonstrate this effect. By measuring the changes of resonant frequency and inverse quality factor Q of a microwave cavity with a small volume of sample loading, the Meissner effect can be shown by using the Slater perturbation equation. The experimental system is described with details and the basic principle of each component discussed. The second part of this work describes the technique employed to do the actual measurements. The experiments were conducted on samples of Gallium Arsenide (GaAs) and lead zirconate titanate (PZT) to look for the possible high temperature superconductivity properties. Results of these experiments are presented and discussed. Conclusion and suggestions to future exploration are made.
Date: December 2001
Creator: Tang, Shan
System: The UNT Digital Library
Modeling and Optimization of Deflection Slits for Fast-Pulsing a Low Energy Ion Beam (open access)

Modeling and Optimization of Deflection Slits for Fast-Pulsing a Low Energy Ion Beam

Honors thesis written by a student in the UNT Honors College discussing the deflection of ion beams to simulate ion flight.
Date: Spring 2006
Creator: Bosca, Ryan
System: The UNT Digital Library

Monte Carlo simulation and experimental studies of the production of neutron-rich medical isotopes using a particle accelerator.

Access: Use of this item is restricted to the UNT Community
The developments of nuclear medicine lead to an increasing demand for the production of radioisotopes with suitable nuclear and chemical properties. Furthermore, from the literature it is evident that the production of radioisotopes using charged-particle accelerators instead of nuclear reactors is gaining increasing popularity. The main advantages of producing medical isotopes with accelerators are carrier free radionuclides of short lived isotopes, improved handling, reduction of the radioactive waste, and lower cost of isotope fabrication. Proton-rich isotopes are the result of nuclear interactions between enriched stable isotopes and energetic protons. An interesting observation is that during the production of proton-rich isotopes, fast and intermediately fast neutrons from nuclear reactions such as (p,xn) are also produced as a by-product in the nuclear reactions. This observation suggests that it is perhaps possible to use these neutrons to activate secondary targets for the production of neutron-rich isotopes. The study of secondary radioisotope production with fast neutrons from (p,xn) reactions using a particle accelerator is the main goal of the research in this thesis.
Date: May 2002
Creator: Rosencranz, Daniela Necsoiu
System: The UNT Digital Library
Multifunctional Organic-Inorganic Hybrid Nanophotonic Devices (open access)

Multifunctional Organic-Inorganic Hybrid Nanophotonic Devices

The emergence of optical applications, such as lasers, fiber optics, and semiconductor based sources and detectors, has created a drive for smaller and more specialized devices. Nanophotonics is an emerging field of study that encompasses the disciplines of physics, engineering, chemistry, biology, applied sciences and biomedical technology. In particular, nanophotonics explores optical processes on a nanoscale. This dissertation presents nanophotonic applications that incorporate various forms of the organic polymer N-isopropylacrylamide (NIPA) with inorganic semiconductors. This includes the material characterization of NIPA, with such techniques as ellipsometry and dynamic light scattering. Two devices were constructed incorporating the NIPA hydrogel with semiconductors. The first device comprises a PNIPAM-CdTe hybrid material. The PNIPAM is a means for the control of distances between CdTe quantum dots encapsulated within the hydrogel. Controlling the distance between the quantum dots allows for the control of resonant energy transfer between neighboring quantum dots. Whereby, providing a means for controlling the temperature dependent red-shifts in photoluminescent peaks and FWHM. Further, enhancement of photoluminescent due to increased scattering in the medium is shown as a function of temperature. The second device incorporates NIPA into a 2D photonic crystal patterned on GaAs. The refractive index change of the NIPA hydrogel as …
Date: May 2008
Creator: Garner, Brett William
System: The UNT Digital Library
Nested Well Plasma Traps (open access)

Nested Well Plasma Traps

Criteria for the confinement of plasmas consisting of a positive and negative component in Penning type traps with nested electric potential wells are presented. Computational techniques for the self-consistent calculation of potential and plasma density distributions are developed. Analyses are presented of the use of nested well Penning traps for several applications. The analyses include: calculations of timescales relevant to the applications, e.g. reaction, confinement and relaxation timescales, self-consistent computations, and consideration of other physical phenomenon important to the applications. Possible applications of a nested well penning trap include production of high charge state ions, studies of high charge state ions, and production of antihydrogen. In addition the properties of a modified Penning trap consisting of an electric potential well applied along a radial magnetic field are explored.
Date: August 2000
Creator: Dolliver, Darrell
System: The UNT Digital Library
Neutron Transmutation and Hydrogenation Study of Hg₁₋xCdxTe (open access)

Neutron Transmutation and Hydrogenation Study of Hg₁₋xCdxTe

Anomalous Hall behavior of HgCdTe refers to a "double cross-over" feature of the Hall coefficient in p-type material, or a peak in the Hall mobility or Hall coefficient in n-type material. A magnetoconductivity tensor approach was utilized to identify presence of two electrons contributing to the conduction as well as transport properties of each electron in the material. The two electron model for the mobility shows that the anomalous Hall behavior results from the competition of two electrons, one in the energy gap graded region near the CdZnTe/HgCdTe interface with large band gap and the other in the bulk of the LPE film with narrow band gap. Hg0.78Cd0.22Te samples grown by LPE on CdZnTe(111B)-oriented substrates were exposed to various doses of thermal neutrons (~1.7 x 1016 - 1.25 x 1017 /cm2) and subsequently annealed at ~220oC for ~24h in Hg saturated vapor to recover damage and reduce the presence of Hg vacancies. Extensive Magnetotransport measurements were performed on these samples. SIMS profile for impurities produced by neutron irradiation was also obtained. The purpose for this study is to investigate the influence of neutron irradiation on this material as a basis for further study on HgCdTe74Se. The result shows that total …
Date: December 2007
Creator: Zhao, Wei
System: The UNT Digital Library
Non-Poissonian statistics, aging and "blinking'" quantum dots. (open access)

Non-Poissonian statistics, aging and "blinking'" quantum dots.

This dissertation addresses the delicate problem of aging in complex systems characterized by non-Poissonian statistics. With reference to a generic two-states system interacting with a bath it is shown that to properly describe the evolution of such a system within the formalism of the continuous time random walk (CTRW), it has to be taken into account that, if the system is prepared at time t=0 and the observation of the system starts at a later time ta>0, the distribution of the first sojourn times in each of the two states depends on ta, the age of the system. It is shown that this aging property in the fractional derivative formalism forces to introduce a fractional index depending on time. It is shown also that, when a stationary condition exists, the Onsager regression principle is fulfilled only if the system is aged and consequently if an infinitely aged distribution for the first sojourn times is adopted in the CTRW formalism used to describe the system itself. This dissertation, as final result, shows how to extend to the non-Poisson case the Kubo Anderson (KA) lineshape theory, so as to turn it into a theoretical tool adequate to describe the time evolution of …
Date: August 2004
Creator: Aquino, Gerardo
System: The UNT Digital Library
The Nonadditive Generalization of Klimontovich's S-Theorem for Open Systems and Boltzmann's Orthodes (open access)

The Nonadditive Generalization of Klimontovich's S-Theorem for Open Systems and Boltzmann's Orthodes

We show that the nonadditive open systems can be studied in a consistent manner by using a generalized version of S-theorem. This new generalized S-theorem can further be considered as an indication of self-organization in nonadditive open systems as prescribed by Haken. The nonadditive S-theorem is then illustrated by using the modified Van der Pol oscillator. Finally, Tsallis entropy as an equilibrium entropy is studied by using Boltzmann's method of orthodes. This part of dissertation shows that Tsallis ensemble is on equal footing with the microcanonical, canonical and grand canonical ensembles. However, the associated entropy turns out to be Renyi entropy.
Date: August 2008
Creator: Bagci, Gokhan Baris
System: The UNT Digital Library
Nonlinear UV Laser Build-up Cavity: An Efficient Design (open access)

Nonlinear UV Laser Build-up Cavity: An Efficient Design

Using the concept of the build-up cavity for second harmonic generation to produce 243nm laser light, an innovative cavity is theoretically explored using a 15mm length CLBO crystal. In order to limit the losses of the cavity, the number of effective optical surfaces is kept to only four and the use of a MgF2 crystal is adopted to separate the harmonic and fundamental laser beam from each other. The cavity is shown to have an expected round trip loss of five tenths of a percent or better, resulting in a conversion efficiency greater than 65%.
Date: May 2009
Creator: Rady, Nicholas Henry
System: The UNT Digital Library
A Novel Process for GeSi Thin Film Synthesis (open access)

A Novel Process for GeSi Thin Film Synthesis

A unique process of fabricating a strained layer GexSi1-x on insulator is demonstrated. Such strained heterostructures are useful in the fabrication of high-mobility transistors. This technique incorporates well-established silicon processing technology e.g., ion implantation and thermal oxidation. A dilute GeSi layer is initially formed by implanting Ge+ into a silicon-on-insulator (SOI) substrate. Thermal oxidation segregates the Ge at the growing oxide interface to form a distinct GexSi1-x thin-film with a composition that can be tailored by controlling the oxidation parameters (e.g. temperature and oxidation ambient). In addition, the film thickness can be controlled by implantation fluence, which is important since the film forms pseudomorphically below 2×1016 Ge/cm2. Continued oxidation consumes the underlying Si leaving the strained GeSi film encapsulated by the two oxide layers, i.e. the top thermal oxide and the buried oxide. Removal of the thermal oxide by a dilute HF etch completes the process. Strain relaxation can be achieved by either of two methods. One involves vacancy injection by ion implantation to introduce sufficient open-volume within the film to compensate for the compressive strain. The other depends upon the formation of GeO2. If Ge is oxidized in the absence of Si, it evaporates as GeO(g) resulting in spontaneous …
Date: December 2007
Creator: Hossain, Khalid
System: The UNT Digital Library
Oligonucleotide guanosine conjugated to gallium nitride nano-structures for photonics. (open access)

Oligonucleotide guanosine conjugated to gallium nitride nano-structures for photonics.

In this work, I studied the hybrid system based on self-assembled guanosine crystal (SAGC) conjugated to wide-bandgap semiconductor gallium nitride (GaN). Guanosine is one of the four bases of DNA and has the lowest oxidation energy, which favors carrier transport. It also has large dipole moment. Guanosine molecules self-assemble to ribbon-like structure in confined space. GaN surface can have positive or negative polarity depending on whether the surface is Ga- or N-terminated. I studied SAGC in confined space between two electrodes. The current-voltage characteristics can be explained very well with the theory of metal-semiconductor-metal (MSM) structure. I-V curves also show strong rectification effect, which can be explained by the intrinsic polarization along the axis of ribbon-like structure of SAGC. GaN substrate property influences the properties of SAGC. So SAGC has semiconductor properties within the confined space up to 458nm. When the gap distance gets up to 484nm, the structure with guanosine shows resistance characteristics. The photocurrent measurements show that the bandgap of SAGC is about 3.3-3.4eV and affected by substrate properties. The MSM structure based on SAGC can be used as photodetector in UV region. Then I show that the periodic structure based on GaN and SAGC can have photonic …
Date: August 2008
Creator: Li, Jianyou
System: The UNT Digital Library
Perturbation of renewal processes (open access)

Perturbation of renewal processes

Renewal theory began development in the early 1940s, as the need for it in the industrial engineering sub-discipline operations research had risen. In time, the theory found applications in many stochastic processes. In this thesis I investigated the effect of seasonal effects on Poisson and non-Poisson renewal processes in the form of perturbations. It was determined that the statistical analysis methods developed at UNT Center for Nonlinear Science can be used to detect the effects of seasonality on the data obtained from Poisson/non-Poisson renewal systems. It is proved that a perturbed Poisson process can serve as a paradigmatic model for a case where seasonality is correlated to the noise and that diffusion entropy method can be utilized in revealing this relation. A renewal model making a connection with the stochastic resonance phenomena is used to analyze a previous neurological experiment, and it was shown that under the effect of a nonlinear perturbation, a non-Poisson system statistics may make a transition and end up in the of Poisson basin of statistics. I determine that nonlinear perturbation of the power index for a complex system will lead to a change in the complexity characteristics of the system, i.e., the system will reach …
Date: May 2008
Creator: Akin, Osman Caglar
System: The UNT Digital Library
Polymer Gels: Kinetics, Dynamics Studies and Their Applications as Biomaterials (open access)

Polymer Gels: Kinetics, Dynamics Studies and Their Applications as Biomaterials

The polymer gels especially hydrogels have a very special structure and useful features such as unusual volume phase transition, compatibility with biological systems, and sensitivity to environmental stimuli (temperature, pH value, electric field, light and more), which lead to many potential applications in physical and biochemical fields. This research includes: (1) the theoretical and experimental studies of polymer gels on swelling kinetics, spinodal decomposition, and solution convection in gel matrix; (2) applications of polymer gels in wound dressing, tissue-simulating optical phantom and gel display. The kinetics of gel swelling has been theoretically analyzed by considering coupled motions of both solvent and polymer network. Analytical solutions of the solvent and the network movement are derived from collective diffusion equations for a long cylindrical and a large disk gel. Kinetics of spinodal decomposition of N-isopropylacrylamide (NIPA) polymer gel is investigated using turbidity and ultrasonic techniques. By probing movement of domains, a possible time-dependent gel structure in the spinodal decomposition region is presented. Theoretical studies of solution convection in gel matrix have been done and more analysis on dimensionless parameters is provided. To enhance the drug uptake and release capacity of silicone rubber (SR), NIPA hydrogel particles have been incorporated into a SR …
Date: December 2003
Creator: Wang, Changjie
System: The UNT Digital Library
Precision measurements of the hyperfine structure in the 23P state of 3He. (open access)

Precision measurements of the hyperfine structure in the 23P state of 3He.

The unusually large hyperfine structure splittings in the 23P state of the 3He isotope is measured using electro-optic techniques with high precision laser spectroscopy. Originally designed to probe the fine structure of the 4He atom, this experimental setup along with special modifications I implemented to resolve certain 3He related issues has made possible new high precision hyperfine structure measurements. Discussed are the details of the experimental setup and the modifications, including in depth information necessary to consider while performing these measurements. The results of these hyperfine structure measurements give an order of magnitude improvement in precision over the best previously reported values.
Date: May 2003
Creator: Smiciklas, Marc
System: The UNT Digital Library

Random growth of interfaces: Statistical analysis of single columns and detection of critical events.

Access: Use of this item is restricted to the UNT Community
The dynamics of growth and formation of surfaces and interfaces is becoming very important for the understanding of the origin and the behavior of a wide range of natural and industrial dynamical processes. The first part of the paper is focused on the interesting field of the random growth of surfaces and interfaces, which finds application in physics, geology, biology, economics, and engineering among others. In this part it is studied the random growth of surfaces from within the perspective of a single column, namely, the fluctuation of the column height around the mean value, which is depicted as being subordinated to a standard fluctuation-dissipation process with friction g. It is argued that the main properties of Kardar-Parisi-Zhang theory are derived by identifying the distribution of return times to y(0) = 0, which is a truncated inverse power law, with the distribution of subordination times. The agreement of the theoretical prediction with the numerical treatment of the model of ballistic deposition is remarkably good, in spite of the finite size effects affecting this model. The second part of the paper deals with the efficiency of the diffusion entropy analysis (DEA) when applied to the studies of stromatolites. In this case …
Date: August 2004
Creator: Failla, Roberto
System: The UNT Digital Library

Scanning Tunneling Microscopy of Homo-Epitaxial Chemical Vapor Deposited Diamond (100) Films

Access: Use of this item is restricted to the UNT Community
Atomic resolution images of hot-tungsten filament chemical-vapor-deposition (CVD) grown epitaxial diamond (100) films obtained in ultrahigh vacuum (UHV) with a scanning tunneling microscope (STM) are reported. A (2x1) dimer surface reconstruction and amorphous atomic regions were observed on the hydrogen terminated (100) surface. The (2x1) unit cell was measured to be 0.51"0.01 x 0.25"0.01 nm2. The amorphous regions were identified as amorphous carbon. After CVD growth, the surface of the epitaxial films was amorphous at the atomic scale. After 2 minutes of exposure to atomic hydrogen at 30 Torr and the sample temperature at 500° C, the surface was observed to consist of amorphous regions and (2x1) dimer reconstructed regions. After 5 minutes of exposure to atomic hydrogen, the surface was observed to consist mostly of (2x1) dimer reconstructed regions. These observations support a recent model for CVD diamond growth that is based on an amorphous carbon layer that is etched or converted to diamond by atomic hydrogen. With further exposure to atomic hydrogen at 500° C, etch pits were observed in the shape of inverted pyramids with {111} oriented sides. The temperature dependence of atomic hydrogen etching of the diamond (100) surface was also investigated using UHV STM, and …
Date: May 2000
Creator: Stallcup, Richard E.
System: The UNT Digital Library
Space-Charge Saturation and Current Limits in Cylindrical Drift Tubes and Planar Sheaths (open access)

Space-Charge Saturation and Current Limits in Cylindrical Drift Tubes and Planar Sheaths

Space-charge effects play a dominant role in many areas of physics. In high-power microwave devices using high-current, relativistic electron beams, it places a limit on the amount of radiation a device can produce. Because the beam's space-charge can actually reflect a portion of the beam, the ability to accurately predict the amount of current a device can carry is needed. This current value is known as the space-charge limited current. Because of the mathematical difficulties, this limit is typically estimated from a one-dimensional theory. This work presents a two-dimensional theory for calculating an upper-bound for the space-charge limited current of relativistic electron beams propagating in grounded coaxial drift tubes. Applicable to annular beams of arbitrary radius and thickness, the theory includes the effect introduced by a finite-length drift tube of circular cross-section. Using Green's second identity, the need to solve Poisson's equation is transferred to solving a Sturm-Liouville eigenvalue problem, which is easily solved by elementary methods. In general, the resulting eigenvalue, which is required to estimate the limiting current, must be numerically determined. However, analytic expressions can be found for frequently encountered limiting cases. Space-charge effects also produce the fundamental collective behavior found in plasmas, especially in plasma sheaths. …
Date: August 2000
Creator: Stephens, Kenneth Frank
System: The UNT Digital Library