Glomus intraradices: Status of the Genome Project (open access)

Glomus intraradices: Status of the Genome Project

None
Date: September 1, 2008
Creator: Shapiro, Harris
Object Type: Article
System: The UNT Digital Library
Calendar Year 2004 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee (open access)

Calendar Year 2004 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2004 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2004 monitoring data were obtained from groundwater and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge south of Y-12. The CY 2004 monitoring data were obtained under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT) and several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Data contained in this report meet applicable requirements of DOE Order 450.1 (Environmental Protection Program) regarding evaluation of groundwater and surface water quality in areas: …
Date: September 1, 2005
Creator: unknown
Object Type: Report
System: The UNT Digital Library
INTEGRAL BENCHMARKS AVAILABLE THROUGH THE INTERNATIONAL REACTOR PHYSICS EXPERIMENT EVALUATION PROJECT AND THE INTERNATIONAL CRITICALITY SAFETY BENCHMARK EVALUATION PROJECT (open access)

INTEGRAL BENCHMARKS AVAILABLE THROUGH THE INTERNATIONAL REACTOR PHYSICS EXPERIMENT EVALUATION PROJECT AND THE INTERNATIONAL CRITICALITY SAFETY BENCHMARK EVALUATION PROJECT

Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. The International Reactor Physics Experiment Evaluation Project (IRPhEP) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) continue to expand their efforts and broaden their scope to identify, evaluate, and provide integral benchmark data for method and data validation. Benchmark model specifications provided by these two projects are used heavily by the international reactor physics, nuclear data, and criticality safety communities. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. The status of the IRPhEP and ICSBEP is discussed in this paper, and the future of the two projects is outlined and discussed. Selected benchmarks that have been added to the IRPhEP and ICSBEP handbooks since PHYSOR’06 are highlighted, and the future of the two projects is discussed.
Date: September 1, 2008
Creator: Briggs, J. Blair; Scott, Lori; Sartori, Enrico & Rugama, Yolanda
Object Type: Article
System: The UNT Digital Library
Direct Assay of Filter Media following DEOX Testing (open access)

Direct Assay of Filter Media following DEOX Testing

The direct assay of filter media by gamma spectrometry following DEOX testing has distinct advantages over analytical chemistry. Prior to using gamma spectrometry for the quantification of cesium (Cs-137), a calibration must be established with known sources since gamma spectrometry yields relative results. Quantitative analytical chemistry, in particular ICP-MS, has been performed on the filter media for comparison to the gamma spectrometry data. The correlation of gamma spectrometry to ICP-MS data is presented to justify the continued use of gamma spectrometry for filter media.
Date: September 1, 2007
Creator: Lind, R. P.; Giglio, J. J.; Cummings, D. G.; Huntley, M. W.; Morgan, C. D.; Bateman, K. J. et al.
Object Type: Article
System: The UNT Digital Library
Measurement of Resonance Parameters of Orbitally Excited Narrow B^0 Mesons (open access)

Measurement of Resonance Parameters of Orbitally Excited Narrow B^0 Mesons

The authors report a measurement of resonance parameters of the orbitally excited (L = 1) narrow B{sup 0} mesons in decays to B{sup (*)+}{pi}{sup -} using 1.7 fb{sup -1} of data collected by the CDF II detector at the Fermilab Tevatron. The mass and width of the B*{sub 2}{sup 0} state are measured to be m(B*{sub 2}{sup 0}) = 5740.2{sub -1.8}{sup +1.7}(stat.){sub -0.8}{sup +0.9}(syst.) MeV/c{sup 2} and {Lambda}(B*{sub 2}{sup 0}) = 22.7{sub -3.2}{sup +3.8}(stat.){sub -10.2}{sup +3.2}(syst.) MeV/c{sub 2}. The mass difference between the B*{sub 2}{sup 0} and B{sub 1}{sup 0} states is measured to be 14.9{sub -2.5}{sup +2.2}(stat.){sub -1.4}{sup +1.2}(syst.) MeV/c{sup 2}, resulting in a B{sub 1}{sup 0} mass of 5725.3{sub -2.2}{sup +1.6}(stat.){sub -1.5}{sup +1.4}(syst.) MeV/c{sup 2}. This is currently the most precise measurement of the masses of these states and the first measurement of the B*{sub 2}{sup 0} width.
Date: September 1, 2008
Creator: Aaltonen, : T.
Object Type: Article
System: The UNT Digital Library
Commercial-Scale Performance Predictions for High-Temperature Electrolysis Plants Coupled to Three Advanced Reactor Types (open access)

Commercial-Scale Performance Predictions for High-Temperature Electrolysis Plants Coupled to Three Advanced Reactor Types

This report presents results of system analyses that have been developed to assess the hydrogen production performance of commercial-scale high-temperature electrolysis (HTE) plants driven by three different advanced reactor – power-cycle combinations: a high-temperature helium cooled reactor coupled to a direct Brayton power cycle, a supercritical CO2-cooled reactor coupled to a direct recompression cycle, and a sodium-cooled fast reactor coupled to a Rankine cycle. The system analyses were performed using UniSim software. The work described in this report represents a refinement of previous analyses in that the process flow diagrams include realistic representations of the three advanced reactors directly coupled to the power cycles and integrated with the high-temperature electrolysis process loops. In addition, this report includes parametric studies in which the performance of each HTE concept is determined over a wide range of operating conditions. Results of the study indicate that overall thermal-to- hydrogen production efficiencies (based on the low heating value of the produced hydrogen) in the 45 - 50% range can be achieved at reasonable production rates with the high-temperature helium cooled reactor concept, 42 - 44% with the supercritical CO2-cooled reactor and about 33 - 34% with the sodium-cooled reactor.
Date: September 1, 2007
Creator: McKellar, M. G.; O'Brien, J. E. & Herring, J. S.
Object Type: Report
System: The UNT Digital Library
Development of nanostructured and surface modified semiconductors for hybrid organic-inorganic solar cells. (open access)

Development of nanostructured and surface modified semiconductors for hybrid organic-inorganic solar cells.

Solar energy conversion is increasingly being recognized as one of the principal ways to meet future energy needs without causing detrimental environmental impact. Hybrid organic-inorganic solar cells (SCs) are attracting particular interest due to the potential for low cost manufacturing and for use in new applications, such as consumer electronics, architectural integration and light-weight sensors. Key materials advantages of these next generation SCs over conventional semiconductor SCs are in design opportunities--since the different functions of the SCs are carried out by different materials, there are greater materials choices for producing optimized structures. In this project, we explore the hybrid organic-inorganic solar cell system that consists of oxide, primarily ZnO, nanostructures as the electron transporter and poly-(3-hexylthiophene) (P3HT) as the light-absorber and hole transporter. It builds on our capabilities in the solution synthesis of nanostructured semiconducting oxide arrays to this photovoltaic (PV) technology. The three challenges in this hybrid material system for solar applications are (1) achieving inorganic nanostructures with critical spacing that matches the exciton diffusion in the polymer, {approx} 10 nm, (2) infiltrating the polymer completely into the dense nanostructure arrays, and (3) optimizing the interfacial properties to facilitate efficient charge transfer. We have gained an understanding and control …
Date: September 1, 2008
Creator: Hsu, Julia, W. P.
Object Type: Report
System: The UNT Digital Library
THE COMPONENT TEST FACILITY – A NATIONAL USER FACILITY FOR TESTING OF HIGH TEMPERATURE GAS-COOLED REACTOR (HTGR) COMPONENTS AND SYSTEMS (open access)

THE COMPONENT TEST FACILITY – A NATIONAL USER FACILITY FOR TESTING OF HIGH TEMPERATURE GAS-COOLED REACTOR (HTGR) COMPONENTS AND SYSTEMS

The Next Generation Nuclear Plant (NGNP) and other High-Temperature Gas-cooled Reactor (HTGR) Projects require research, development, design, construction, and operation of a nuclear plant intended for both high-efficiency electricity production and high-temperature industrial applications, including hydrogen production. During the life cycle stages of an HTGR, plant systems, structures and components (SSCs) will be developed to support this reactor technology. To mitigate technical, schedule, and project risk associated with development of these SSCs, a large-scale test facility is required to support design verification and qualification prior to operational implementation. As a full-scale helium test facility, the Component Test facility (CTF) will provide prototype testing and qualification of heat transfer system components (e.g., Intermediate Heat Exchanger, valves, hot gas ducts), reactor internals, and hydrogen generation processing. It will perform confirmation tests for large-scale effects, validate component performance requirements, perform transient effects tests, and provide production demonstration of hydrogen and other high-temperature applications. Sponsored wholly or in part by the U.S. Department of Energy, the CTF will support NGNP and will also act as a National User Facility to support worldwide development of High-Temperature Gas-cooled Reactor technologies.
Date: September 1, 2008
Creator: Duncan, David S.; Balls, Vondell J. & Austad, Stephanie L.
Object Type: Article
System: The UNT Digital Library
A robust, coupled approach for atomistic-continuum simulation. (open access)

A robust, coupled approach for atomistic-continuum simulation.

This report is a collection of documents written by the group members of the Engineering Sciences Research Foundation (ESRF), Laboratory Directed Research and Development (LDRD) project titled 'A Robust, Coupled Approach to Atomistic-Continuum Simulation'. Presented in this document is the development of a formulation for performing quasistatic, coupled, atomistic-continuum simulation that includes cross terms in the equilibrium equations that arise due to kinematic coupling and corrections used for the calculation of system potential energy to account for continuum elements that overlap regions containing atomic bonds, evaluations of thermo-mechanical continuum quantities calculated within atomistic simulations including measures of stress, temperature and heat flux, calculation used to determine the appropriate spatial and time averaging necessary to enable these atomistically-defined expressions to have the same physical meaning as their continuum counterparts, and a formulation to quantify a continuum 'temperature field', the first step towards constructing a coupled atomistic-continuum approach capable of finite temperature and dynamic analyses.
Date: September 1, 2004
Creator: Aubry, Sylvie; Webb, Edmund Blackburn, III; Wagner, Gregory John; Klein, Patrick A.; Jones, Reese E.; Zimmerman, Jonathan A. et al.
Object Type: Report
System: The UNT Digital Library
Strengthening the foundations of proliferation assessment tools. (open access)

Strengthening the foundations of proliferation assessment tools.

Robust and reliable quantitative proliferation assessment tools have the potential to contribute significantly to a strengthened nonproliferation regime and to the future deployment of nuclear fuel cycle technologies. Efforts to quantify proliferation resistance have thus far met with limited success due to the inherent subjectivity of the problem and interdependencies between attributes that lead to proliferation resistance. We suggest that these limitations flow substantially from weaknesses in the foundations of existing methodologies--the initial data inputs. In most existing methodologies, little consideration has been given to the utilization of varying types of inputs--particularly the mixing of subjective and objective data--or to identifying, understanding, and untangling relationships and dependencies between inputs. To address these concerns, a model set of inputs is suggested that could potentially be employed in multiple approaches. We present an input classification scheme and the initial results of testing for relationships between these inputs. We will discuss how classifying and testing the relationship between these inputs can help strengthen tools to assess the proliferation risk of nuclear fuel cycle processes, systems, and facilities.
Date: September 1, 2007
Creator: Rexroth, Paul E.; Saltiel, David H.; Rochau, Gary Eugene; Cleary, Virginia D.; Ng, Selena (AREVA NC, Paris, France); Greneche, Dominique (AREVA NC, Paris, France) et al.
Object Type: Report
System: The UNT Digital Library
AN EVALUATION OF POTENTIAL LINER MATERIALS FOR ELIMINATING FCCI IN IRRADIATED METALLIC NUCLEAR FUEL ELEMENTS (open access)

AN EVALUATION OF POTENTIAL LINER MATERIALS FOR ELIMINATING FCCI IN IRRADIATED METALLIC NUCLEAR FUEL ELEMENTS

Metallic nuclear fuels are being looked at as part of the Global Nuclear Energy Program for transmuting longlive transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products. In order to optimize the performance of these fuels, the concept of using liners to eliminate the fuel/cladding chemical interactions that can occur during irradiation of a fuel element has been investigated. The potential liner materials Zr and V have been tested using solid-solid diffusion couples, consisting of liner materials butted against fuel alloys and against cladding materials. The couples were annealed at the relatively high temperature of 700°C. This temperature would be the absolute maximum temperature present at the fuel/cladding interface for a fuel element in-reactor. Analysis was performed using a scanning electron microscope equipped with energy-dispersive and wavelengthdispersive spectrometers (SEM/EDS/WDS) to evaluate any developed diffusion structures. At 700°C, minimal interaction was observed between the metallic fuels and either Zr or V. Similarly, limited interaction was observed between the Zr and V and the cladding materials. The best performing liner material appeared to be the V, based on amounts of interaction.
Date: September 1, 2007
Creator: Keiser, D. D. & Cole, J. I.
Object Type: Article
System: The UNT Digital Library
Potential application of microsensor technology in radioactive waste management with emphasis on headspace gas detection. (open access)

Potential application of microsensor technology in radioactive waste management with emphasis on headspace gas detection.

Waste characterization is probably the most costly part of radioactive waste management. An important part of this characterization is the measurements of headspace gas in waste containers in order to demonstrate the compliance with Resource Conservation and Recovery Act (RCRA) or transportation requirements. The traditional chemical analysis methods, which include all steps of gas sampling, sample shipment and laboratory analysis, are expensive and time-consuming as well as increasing worker's exposure to hazardous environments. Therefore, an alternative technique that can provide quick, in-situ, and real-time detections of headspace gas compositions is highly desirable. This report summarizes the results obtained from a Laboratory Directed Research & Development (LDRD) project entitled 'Potential Application of Microsensor Technology in Radioactive Waste Management with Emphasis on Headspace Gas Detection'. The objective of this project is to bridge the technical gap between the current status of microsensor development and the intended applications of these sensors in nuclear waste management. The major results are summarized below: {sm_bullet} A literature review was conducted on the regulatory requirements for headspace gas sampling/analysis in waste characterization and monitoring. The most relevant gaseous species and the related physiochemical environments were identified. It was found that preconcentrators might be needed in order for …
Date: September 1, 2004
Creator: Davis, Chad Edward; Thomas, Michael Loren; Wright, Jerome L.; Pohl, Phillip Isabio; Hughes, Robert Clark; Wang, Yifeng et al.
Object Type: Report
System: The UNT Digital Library
Analysis and control of distributed cooperative systems. (open access)

Analysis and control of distributed cooperative systems.

As part of DARPA Information Processing Technology Office (IPTO) Software for Distributed Robotics (SDR) Program, Sandia National Laboratories has developed analysis and control software for coordinating tens to thousands of autonomous cooperative robotic agents (primarily unmanned ground vehicles) performing military operations such as reconnaissance, surveillance and target acquisition; countermine and explosive ordnance disposal; force protection and physical security; and logistics support. Due to the nature of these applications, the control techniques must be distributed, and they must not rely on high bandwidth communication between agents. At the same time, a single soldier must easily direct these large-scale systems. Finally, the control techniques must be provably convergent so as not to cause undo harm to civilians. In this project, provably convergent, moderate communication bandwidth, distributed control algorithms have been developed that can be regulated by a single soldier. We have simulated in great detail the control of low numbers of vehicles (up to 20) navigating throughout a building, and we have simulated in lesser detail the control of larger numbers of vehicles (up to 1000) trying to locate several targets in a large outdoor facility. Finally, we have experimentally validated the resulting control algorithms on smaller numbers of autonomous vehicles.
Date: September 1, 2004
Creator: Feddema, John Todd; Parker, Eric Paul; Wagner, John S. & Schoenwald, David Alan
Object Type: Report
System: The UNT Digital Library
Use of composite materials, health monitoring and self-healing concepts to refurbish our civil and military infrastructure. (open access)

Use of composite materials, health monitoring and self-healing concepts to refurbish our civil and military infrastructure.

An unavoidable by-product of a metallic structure's use is the appearance of crack, corrosion, erosion and other flaws. Economic barriers to the replacement of these structures have created an aging civil and military infrastructure and placed even greater demands on efficient and safe repair and inspection methods. As a result of Homeland Security issues and these aging infrastructure concerns, increased attention has been focused on the rapid repair and preemptive reinforcement of structures such as buildings and bridges. This Laboratory Directed Research and Development (LDRD) program established the viability of using bonded composite patches to repair metallic structures. High modulus fiber-reinforced polymer (FRP) material may be used in lieu of mechanically fastened metallic patches or welds to reinforce or repair damaged structures. Their use produces a wide array of engineering and economic advantages. Current techniques for strengthening steel structures have several drawbacks including requiring heavy equipment for installation, poor fatigue performance, and the need for ongoing maintenance due to continued corrosion attack or crack growth. The use of bonded composite doublers has the potential to correct the difficulties associated with current repair techniques and the ability to be applied where there are currently no rehabilitation options. Applications include such diverse …
Date: September 1, 2007
Creator: Roach, Dennis Patrick; Delong, Waylon Anthony; White, Scott (University of Illinois, Urbana, Illinois); Yepez, Esteban; Rackow, Kirk A. & Reedy, Earl David, Jr.
Object Type: Report
System: The UNT Digital Library
Geothermal Tomorrow 2008 (open access)

Geothermal Tomorrow 2008

Brochure describing the recent activities and future research direction of the DOE Geothermal Program.
Date: September 1, 2008
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Stereo soft x-ray microscopy and elemental mapping of hematite and clay suspensions (open access)

Stereo soft x-ray microscopy and elemental mapping of hematite and clay suspensions

The spatial arrangements of hematite particles within aqueous soil and clay samples are investigated with soft X-ray microscopy, taking advantage of the elemental contrast at the Fe-L edge around E = 707 eV. In combination with stereo microscopy, information about spatial arrangements are revealed and correlated to electrostatic interactions of the different mixtures. Manipulation of a sample mounted to the microscope is possible and particles added while imaging can be detected.
Date: September 1, 2008
Creator: Gleber, S.-C.; Thieme, J.; Chao, W. & Fischer, P.
Object Type: Article
System: The UNT Digital Library
NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger (open access)

NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger

One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the …
Date: September 1, 2008
Creator: Sabharwall, Piyush; Patterson, Mike; Utgikar, Vivek & Gunnerson, Fred
Object Type: Article
System: The UNT Digital Library
Power conversion from environmentally scavenged energy sources. (open access)

Power conversion from environmentally scavenged energy sources.

As the power requirements for modern electronics continue to decrease, many devices which were once dependent on wired power are now being implemented as portable devices operating from self-contained power sources. The most prominent source of portable power is the electrochemical battery, which converts chemical energy into electricity. However, long lasting batteries require large amounts of space for chemical storage, and inevitably require replacement when the chemical reaction no longer takes place. There are many transducers and scavenging energy sources (SES) that are able to exploit their environment to generate low levels of electrical power over a long-term time period, including photovoltaic cells, thermoelectric generators, thermionic generators, and kinetic/piezoelectric power generators. This generated power is sustainable as long as specific environmental conditions exist and also does not require the large volume of a long lifetime battery. In addition to the required voltage generation, stable power conversion requires excess energy to be efficiently stored in an ultracapacitor or similar device and monitoring control algorithms to be implemented, while computer modeling and simulation can be used to complement experimental testing. However, building an efficient and stable power source scavenged from a varying input source is challenging.
Date: September 1, 2007
Creator: Druxman, Lee Daniel
Object Type: Report
System: The UNT Digital Library
Plastic Straining of Iridium Alloy DOP-26 During Cup Sizing Operations (open access)

Plastic Straining of Iridium Alloy DOP-26 During Cup Sizing Operations

DOP-26 iridium alloy cups are used for fuel cladding for radioisotope power systems. The cups are deep drawn and recrystallized prior to final fabrication operations. This study characterizes the plastic deformation of cups during a sizing operation following the recrystallization heat treatment. The purpose of the sizing operation is to achieve the specified roundness, diameter, and radius dimensions of the cup. The operation introduces various levels of plastic strain in the cup. Plastic strain can be a cause of inhomogeneous or abnormal grain growth during subsequent exposure to elevated temperature during the service life of the fueled clad. This is particularly true in the case of cups which have irregularities in the cup walls from the deep drawing operations. Diameter and roundness measurements were made on two cups both before and after sizing. Plastic strain levels were calculated using the ABAQUSTM finite element software. The calculated plastic strain levels in both cups were below 0.025, a value shown to be below the critical strain for abnormal grain growth during a simulated service exposure. The calculated maximum plastic strain was found to increase with increased applied sizing load and was not sensitive to the input value for the clearance between the …
Date: September 1, 2007
Creator: Ohriner, Evan Keith; Ulrich, George B & Sabau, Adrian S
Object Type: Report
System: The UNT Digital Library
Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 3, Bryan Mound Site, Texas. (open access)

Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 3, Bryan Mound Site, Texas.

Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 3 focuses on the Bryan Mound SPR site, located in southeastern Texas. Volumes 1, 2, and 4, respectively, present images for the Bayou Choctaw SPR site, Louisiana, the Big Hill SPR site, Texas, and the West Hackberry SPR site, Louisiana. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes, the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.
Date: September 1, 2007
Creator: Rautman, Christopher Arthur & Lord, Anna Snider
Object Type: Report
System: The UNT Digital Library
Corrective Action Decision Document/ Closure Report for Corrective Action Unit 556: Dry Wells and Surface Release Points, Nevada Test Site, Nevada with Errata Sheet, Revision 0 (open access)

Corrective Action Decision Document/ Closure Report for Corrective Action Unit 556: Dry Wells and Surface Release Points, Nevada Test Site, Nevada with Errata Sheet, Revision 0

This Corrective Action Decision Document (CADD)/Closure Report (CR) has been prepared for Corrective Action Unit 556, Dry Wells and Surface Release Points, located at the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996; as amended February 2008). Corrective Action Unit (CAU) 556 is comprised of four corrective action sites (CASs): • 06-20-04, National Cementers Dry Well • 06-99-09, Birdwell Test Hole • 25-60-03, E-MAD Stormwater Discharge and Piping • 25-64-01, Vehicle Washdown and Drainage Pit The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure of CAU 556 with no further corrective action. To achieve this, corrective action investigation (CAI) activities began on February 7 and were completed on June 19, 2008, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 556: Dry Wells and Surface Release Points, Nevada Test Site, Nevada (NNSA/NSO, 2007). The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective (DQO) process: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent. • Provide sufficient information and data to complete …
Date: September 1, 2008
Creator: Evenson, Grant
Object Type: Report
System: The UNT Digital Library
A short model excitation of an asymmetric force free superconducting transmission line magnet (open access)

A short model excitation of an asymmetric force free superconducting transmission line magnet

A short model of asymmetric force free magnet with single beam aperture was tested at Fermilab together with the excitation test of VLHC transmission line magnet. The design concept of asymmetric force free superconducting magnet was verified by the test. The testing reached up to 104 kA current and no indication of force imbalance was observed. Since the model magnet length was only 10cm, A 0.75m model was constructed and tested at KEK with low current to ensure the validity of the design. The cool down and the excitation at KEK were also successful finding very small thermal contraction of the conductor and reasonable field homogeneity.
Date: September 1, 2005
Creator: Wake, M.; Sato, H.; Carcagno, R.; Foster, W.; Hays, S.; Kashikhin, V. et al.
Object Type: Article
System: The UNT Digital Library
Geochemical Signatures as a Tool for Vermiculite Provenance Determination (open access)

Geochemical Signatures as a Tool for Vermiculite Provenance Determination

Thirty-eight samples of known origin (China, Libby MT, South Africa, South Carolina) and 6 vermiculite product samples of unknown origin were analyzed for major and trace elements, including rare earth elements to determine the feasibility of distinguishing the provenance of the samples based upon a geochemical signature. Probability plots suggest that two of the four groups (Libby, South Carolina) were comprised of two subgroups. Results of hierarchical cluster analysis are highly sensitive to the linkage method chosen. Ward’s method is the most useful for this data and suggests that there are five groups within the data set (South African samples, two subsets of the Libby samples, a subset of the South Carolina samples, and a second subset of the South Carolina samples combined with the China samples). Similar results were obtained using k-cluster analysis. Neither clustering method was able to distinguish samples from China from the South Carolina samples. Discriminant analysis was used on a four-category model comprised of the original four groups and on a six-category model comprised of the five categories identified from the cluster analysis but with the China samples grouped into a sixth category. The discriminant/classification model was able to distinguish all of the groups including …
Date: September 1, 2008
Creator: Wright, Karen E. & Palmer, Carl D.
Object Type: Report
System: The UNT Digital Library
Search for Higgs Boson Production in Association with the W boson in 1.96-TeV Proton-Antiproton Collisions (open access)

Search for Higgs Boson Production in Association with the W boson in 1.96-TeV Proton-Antiproton Collisions

A search for the Standard Model Higgs boson was carried out in WH {yields} {ell}{nu}b{bar b} process in p{bar p} collisions at a center of mass energy of 1.96 TeV, where W, H, {ell}, {nu}, b and p denote either a W{sup +} or W{sup -} boson, Higgs boson, lepton (electron or muon), neutrino, bottom quark and proton, respectively. The data were collected with the Collider Detector at Fermilab from February 2002 to August 2004. The corresponding integrated luminosity is 319 pb{sup -1}. We select events containing a single high-p{sub T} electron or muon, a large imbalance of the total transverse energy from a neutrino and two b quark jets. The main backgrounds are the W + light flavor/gluon jets and W + heavy flavor jets processes. Requiring the secondary vertex b-tagging enables us to reject the W + light flavor/gluon jets events effectively. After all event selections, they observe 187 events which is in agreement with the Standard Model background expectation of 175.2 {+-} 26.3 events, and there is no significant excess originating from the Higgs boson in the reconstructed dijet invariant mass distribution. They thus set a 95% confidence level upper limit on the production cross section times …
Date: September 1, 2005
Creator: Ishizawa, Yoshio
Object Type: Thesis or Dissertation
System: The UNT Digital Library