The Forensic Evaluation of Fracture Marks: A Validation and Experimental Study. (open access)

The Forensic Evaluation of Fracture Marks: A Validation and Experimental Study.

Honors thesis written by a student in the UNT Honors College discussing the examination of fracture marks in forensic investigations in order to determine if two parts of an object belonged to a whole.
Date: May 1, 2007
Creator: Bethune, Sherry
System: The UNT Digital Library
An implicit Smooth Particle Hydrodynamic code (open access)

An implicit Smooth Particle Hydrodynamic code

An implicit version of the Smooth Particle Hydrodynamic (SPH) code SPHINX has been written and is working. In conjunction with the SPHINX code the new implicit code models fluids and solids under a wide range of conditions. SPH codes are Lagrangian, meshless and use particles to model the fluids and solids. The implicit code makes use of the Krylov iterative techniques for solving large linear-systems and a Newton-Raphson method for non-linear corrections. It uses numerical derivatives to construct the Jacobian matrix. It uses sparse techniques to save on memory storage and to reduce the amount of computation. It is believed that this is the first implicit SPH code to use Newton-Krylov techniques, and is also the first implicit SPH code to model solids. A description of SPH and the techniques used in the implicit code are presented. Then, the results of a number of tests cases are discussed, which include a shock tube problem, a Rayleigh-Taylor problem, a breaking dam problem, and a single jet of gas problem. The results are shown to be in very good agreement with analytic solutions, experimental results, and the explicit SPHINX code. In the case of the single jet of gas case it has …
Date: April 1, 2000
Creator: Knapp, Charles E.
System: The UNT Digital Library
Open cycle thermoacoustics (open access)

Open cycle thermoacoustics

A new type of thermodynamic device combining a thermodynamic cycle with the externally applied steady flow of an open thermodynamic process is discussed and experimentally demonstrated. The gas flowing through this device can be heated or cooled in a series of semi-open cyclic steps. The combination of open and cyclic flows makes possible the elimination of some or all of the heat exchangers (with their associated irreversibility). Heat is directly exchanged with the process fluid as it flows through the device when operating as a refrigerator, producing a staging effect that tends to increase First Law thermodynamic efficiency. An open-flow thermoacoustic refrigerator was built to demonstrate this concept. Several approaches are presented that describe the physical characteristics of this device. Tests have been conducted on this refrigerator with good agreement with a proposed theory.
Date: January 1, 2000
Creator: Reid, Robert Stowers
System: The UNT Digital Library
Collisionless relaxation in beam-plasma systems (open access)

Collisionless relaxation in beam-plasma systems

This thesis reports the results from the theoretical investigations, both numerical and analytical, of collisionless relaxation phenomena in beam-plasma systems. Many results of this work can also be applied to other lossless systems of plasma physics, beam physics and astrophysics. Different aspects of the physics of collisionless relaxation and its modeling are addressed. A new theoretical framework, named Coupled Moment Equations (CME), is derived and used in numerical and analytical studies of the relaxation of second order moments such as beam size and emittance oscillations. This technique extends the well-known envelope equation formalism, and it can be applied to general systems with nonlinear forces. It is based on a systematic moment expansion of the Vlasov equation. In contrast to the envelope equation, which is derived assuming constant rms beam emittance, the CME model allows the emittance to vary through coupling to higher order moments. The CME model is implemented in slab geometry in the absence of return currents. The CME simulation yields rms beam sizes, velocity spreads and emittances that are in good agreement with particle-in-cell (PIC) simulations for a wide range of system parameters. The mechanism of relaxation is also considered within the framework of the CME system. It …
Date: May 1, 2001
Creator: Backhaus, Ekaterina Yu.
System: The UNT Digital Library
The intergroup protocols: Scalable group communication for the internet (open access)

The intergroup protocols: Scalable group communication for the internet

Reliable group ordered delivery of multicast messages in a distributed system is a useful service that simplifies the programming of distributed applications. Such a service helps to maintain the consistency of replicated information and to coordinate the activities of the various processes. With the increasing popularity of the Internet, there is an increasing interest in scaling the protocols that provide this service to the environment of the Internet. The InterGroup protocol suite, described in this dissertation, provides such a service, and is intended for the environment of the Internet with scalability to large numbers of nodes and high latency links. The InterGroup protocols approach the scalability problem from various directions. They redefine the meaning of group membership, allow voluntary membership changes, add a receiver-oriented selection of delivery guarantees that permits heterogeneity of the receiver set, and provide a scalable reliability service. The InterGroup system comprises several components, executing at various sites within the system. Each component provides part of the services necessary to implement a group communication system for the wide-area. The components can be categorized as: (1) control hierarchy, (2) reliable multicast, (3) message distribution and delivery, and (4) process group membership. We have implemented a prototype of the …
Date: November 1, 2000
Creator: Berket, K.
System: The UNT Digital Library
Mechanics of Metals with Phase Changes (open access)

Mechanics of Metals with Phase Changes

New experimental data is presented on some exotic metals that exhibit phase changes at cryogenic temperatures. The types of phase changes that were detected in the specific heat data range from martensitic (diffusion less) transitions to superconducting transitions. In addition, the charge density wave (CDW) state in uranium metal was detected in the specific heat. Specific-heat measurements were made in zero-magnetic field using an apparatus capable of obtaining temperatures as low as 0.4 K. Calibration performed on this apparatus, using a single-crystal copper sample, show its accuracy to be 0.50%, while the resolution was better than 0.1%. Our measurements demonstrate that similar high precision and accurate specific-heat measurements can be obtained on milligram-scale samples. In Chapters 2 and 3, specific-heat measurements are presented for the B2 (CsCl structure) alloy AuZn and for {alpha}-uranium (orthorhombic symmetry). The AuZn alloy exhibits a continuous transition at 64.75 K and an entropy of transition of ({Delta}S{sub tr}) 2.02 J K{sup {minus}1} mol{sup {minus}1}. Calculation of the Debye temperature, by extrapolating of the high temperature phase elastic constants to T = 0 K yields a value of 207 K ({+-}2 K), in favorable agreement with the calorimetric value of 219 K ({+-}0.50 K), despite the …
Date: January 1, 2001
Creator: Lashley, J.C.
System: The UNT Digital Library
Water resources development in Santa Clara Valley, California: insights into the human-hydrologic relationship (open access)

Water resources development in Santa Clara Valley, California: insights into the human-hydrologic relationship

Groundwater irrigation is critical to food production and, in turn, to humankind's relationship with its environment. The development of groundwater in Santa Clara Valley, California during the early twentieth century is instructive because (1) responses to unsustainable resource use were largely successful; (2) the proposals for the physical management of the water, although not entirely novel, incorporated new approaches which reveal an evolving relationship between humans and the hydrologic cycle; and (3) the valley serves as a natural laboratory where natural (groundwater basin, surface watershed) and human (county, water district) boundaries generally coincide. Here, I investigate how water resources development and management in Santa Clara Valley was influenced by, and reflective of, a broad understanding of water as a natural resource, including scientific and technological innovations, new management approaches, and changing perceptions of the hydrologic cycle. Market demands and technological advances engendered reliance on groundwater. This, coupled with a series of dry years and laissez faire government policies, led to overdraft. Faith in centralized management and objective engineering offered a solution to concerns over resource depletion, and a group dominated by orchardists soon organized, fought for a water conservation district, and funded an investigation to halt the decline of well …
Date: June 1, 2000
Creator: Reynolds, Jesse L. & Narasimhan, T.N.
System: The UNT Digital Library
Multi-atom resonant photoemission and the development of next-generation software and high-speed detectors for electron spectroscopy (open access)

Multi-atom resonant photoemission and the development of next-generation software and high-speed detectors for electron spectroscopy

This dissertation has involved the exploration of a new effect in photoelectron emission, multi-atom resonant photoemission (MARPE), as well as the development of new software, data analysis techniques, and detectors of general use in such research. We present experimental and theoretical results related to MARPE, in which the photoelectron intensity from a core level on one atom is influenced by a core-level absorption resonance on another. We point out that some of our and others prior experimental data has been strongly influenced by detector non-linearity and that the effects seen in new corrected data are smaller and of different form. Corrected data for the MnO(001) system with resonance between the O 1s and Mn 2p energy levels are found to be well described by an extension of well-known intraatomic resonant photoemission theory to the interatomic case, provided that interactions beyond the usual second-order Kramers-Heisenberg treatment are included. This theory is also found to simplify under certain conditions so as to yield results equivalent to a classical x-ray optical approach, with the latter providing an accurate and alternative, although less detailed and general, physical picture of these effects. Possible future applications of MARPE as a new probe of near-neighbor identities and …
Date: September 1, 2000
Creator: Kay, Alexander William
System: The UNT Digital Library
Fidelity of a Finite Element Model for Longitudinal Wave Propagation in Thick Cylindrical Wave Guides (open access)

Fidelity of a Finite Element Model for Longitudinal Wave Propagation in Thick Cylindrical Wave Guides

The ability to model wave propagation in circular cylindrical bars of finite length numerically or analytically has many applications. In this thesis the capability of an explicit finite element method to model longitudinal waves in cylindrical rods with circular cross-sections is explored. Dispersion curves for the first four modes are compared to the analytical solution to determine the accuracy of various element sizes and time steps. Values for the time step and element size are determined that retain accuracy while minimizing computational time. The modeling parameters are validated by calculating a signal propagated with a broadband input force. Limitations on the applicability are considered along with modeling parameters that should be applicable to more general geometries.
Date: September 1, 2000
Creator: Puckett, A.D.
System: The UNT Digital Library
Image reconstruction for a Positron Emission Tomograph optimized for breast cancer imaging (open access)

Image reconstruction for a Positron Emission Tomograph optimized for breast cancer imaging

The author performs image reconstruction for a novel Positron Emission Tomography camera that is optimized for breast cancer imaging. This work addresses for the first time, the problem of fully-3D, tomographic reconstruction using a septa-less, stationary, (i.e. no rotation or linear motion), and rectangular camera whose Field of View (FOV) encompasses the entire volume enclosed by detector modules capable of measuring Depth of Interaction (DOI) information. The camera is rectangular in shape in order to accommodate breasts of varying sizes while allowing for soft compression of the breast during the scan. This non-standard geometry of the camera exacerbates two problems: (a) radial elongation due to crystal penetration and (b) reconstructing images from irregularly sampled data. Packing considerations also give rise to regions in projection space that are not sampled which lead to missing information. The author presents new Fourier Methods based image reconstruction algorithms that incorporate DOI information and accommodate the irregular sampling of the camera in a consistent manner by defining lines of responses (LORs) between the measured interaction points instead of rebinning the events into predefined crystal face LORs which is the only other method to handle DOI information proposed thus far. The new procedures maximize the use …
Date: April 1, 2000
Creator: Virador, Patrick R.G.
System: The UNT Digital Library
XANES, EXAFS and Kbeta spectroscopic studies of the oxygen-evolving complex in Photosystem II (open access)

XANES, EXAFS and Kbeta spectroscopic studies of the oxygen-evolving complex in Photosystem II

A key question for the understanding of photosynthetic water oxidation is whether the four oxidizing equivalents necessary to oxidize water to dioxygen are accumulated on the four Mn ions of the oxygen evolving complex (OEC), or whether some ligand-centered oxidations take place before the formation and release of dioxygen during the S{sub 3} {r_arrow} [S{sub 4}] {r_arrow} S{sub 0} transition. Progress in instrumentation and flash sample preparation allowed us to apply Mn K{beta} X-ray emission spectroscopy (Kb XES) to this problem for the first time. The K{beta} XES results, in combination with Mn X-ray absorption near-edge structure (XANES) and electron paramagnetic resonance (EPR) data obtained from the same set of samples, show that the S{sub 2} {r_arrow} S{sub 3} transition, in contrast to the S{sub 0} {r_arrow} S{sub 1} and S{sub 1} {r_arrow} S{sub 2} transitions, does not involve a Mn-centered oxidation. This is rationalized by manganese {mu}-oxo bridge radical formation during the S{sub 2} {r_arrow} S{sub 3} transition. Using extended X-ray absorption fine structure (EXAFS) spectroscopy, the local environment of the Mn atoms in the S{sub 0} state has been structurally characterized. These results show that the Mn-Mn distance in one of the di-{mu}-oxo-bridged Mn-Mn moieties increases from 2.7 …
Date: December 1, 2000
Creator: Robblee, John H.
System: The UNT Digital Library
Measurement of a Weak Polarization Sensitivity to the Beam Orbit of the CEBAF Accelerator (open access)

Measurement of a Weak Polarization Sensitivity to the Beam Orbit of the CEBAF Accelerator

An accelerator-based experiment was performed using the CEBAF accelerator of the Thomas Jefferson National Accelerator Facility to investigate a predicted sensitivity of the beam polarization to the vertical betatron orbit in the recirculation arcs. This is the first measurement of any such effect at CEBAF, and provides information about the polarized beam delivery performance of the accelerator. A brief description of the accelerator is given, followed by the experimental methods used and the relevant issues involved in measuring a small ({approximately} 10{sup {minus}2}) change in the beam polarization. Results of measurements of the polarization sensitivity parameters and the machine energy by polarization transport techniques are presented. The parameters were obtained by measurement of the strength of the effect as a function of orbit amplitude and spin orientation, to confirm the predicted coupling between the spin orientation and the quadrupole fields in the beam transport system. This experiment included characterizing the injector spin manipulation system and 5 MeV Mott polarimeter, modeling of the polarization transport of the accelerator, installation of magnets to create a modulated orbit perturbation in a single recirculation arc, and detailed studies of the Hall C Moeller polarimeter.
Date: April 1, 2000
Creator: Grames, Joseph
System: The UNT Digital Library
Surface structure determinations of crystalline ionic thin films grown on transition metal single crystal surfaces by low energy electron diffraction (open access)

Surface structure determinations of crystalline ionic thin films grown on transition metal single crystal surfaces by low energy electron diffraction

The surface structures of NaCl(100), LiF(100) and alpha-MgCl2(0001) adsorbed on various metal single crystals have been determined by low energy electron diffraction (LEED). Thin films of these salts were grown on metal substrates by exposing the heated metal surface to a molecular flux of salt emitted from a Knudsen cell. This method of investigating thin films of insulators (ionic salts) on a conducting substrate (metal) circumvents surface charging problems that plagued bulk studies, thereby allowing the use of electron-based techniques to characterize the surface.
Date: May 1, 2000
Creator: Roberts, J.G.
System: The UNT Digital Library
X-ray and photoelectron spectroscopy of the structure, reactivity, and electronic structure of semiconductor nanocrystals (open access)

X-ray and photoelectron spectroscopy of the structure, reactivity, and electronic structure of semiconductor nanocrystals

Semiconductor nanocrystals are a system which has been the focus of interest due to their size dependent properties and their possible use in technological applications. Many chemical and physical properties vary systematically with the size of the nanocrystal and thus their study enables the investigation of scaling laws. Due to the increasing surface to volume ratio as size is decreased, the surfaces of nanocrystals are expected to have a large influence on their electronic, thermodynamic, and chemical behavior. In spite of their importance, nanocrystal surfaces are still relatively uncharacterized in terms of their structure, electronic properties, bonding, and reactivity. Investigation of nanocrystal surfaces is currently limited by what techniques to use, and which methods are suitable for nanocrystals is still being determined. This work presents experiments using x-ray and electronic spectroscopies to explore the structure, reactivity, and electronic properties of semiconductor (CdSe, InAs) nanocrystals and how they vary with size. Specifically, x-ray absorption near edge spectroscopy (XANES) in conjunction with multiple scattering simulations affords information about the structural disorder present at the surface of the nanocrystal. X-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS) probe the electronic structure in terms of hole screening, and also give information about band …
Date: May 1, 2000
Creator: Hamad, K.S.
System: The UNT Digital Library
The Influence of Ergonomics Training on Employee Behavior at Los Alamos National Laboratory (open access)

The Influence of Ergonomics Training on Employee Behavior at Los Alamos National Laboratory

A survey of employee behavior was conducted at Los Alamos National Laboratory (LANL). The objective of this study was to evaluate the prevalence of ergonomic behavior that decreased the chance of having a work-related musculoskeletal disorder (WMSD) among employees. The null hypothesis was tested to determine if there was a significant difference in ergonomic behavior between trained and untrained employees. The LANL employees were stratified by job series and then randomly selected to participate. The data were gathered using an electronic self-administered behavior questionnaire. The study population was composed of 6931 employees, and the response rate was 48%. The null hypothesis was rejected for twelve out of fifteen questions on the questionnaire. Logistic regression results indicate that the trained participants were more likely to report the risk-avoiding behavior, which supported the rejection of the null hypothesis for 60% of the questions. There was a higher frequency that the beneficial or risk-avoiding behavior was reported by the uninjured participants. Job series analysis revealed that ergonomics is an important issue among participants from all the job series. It also identified the occupational specialist classification (an administrative job), as the job series with the most occurrences of undesired ergonomic behaviors. In conclusion, there …
Date: January 1, 2001
Creator: Puckett, Leslie Guthrie
System: The UNT Digital Library
Gradient Effects on the Fracture of Inhomogeneous Materials (open access)

Gradient Effects on the Fracture of Inhomogeneous Materials

Functionally Graded Materials (FGMs) have a spatial variation in physical properties that can be tailored to meet the needs of a specific application and/or to minimize internal stresses arising from thermal and elastic mismatch. Modeling these materials as inhomogeneous continua allows assessment of the role of the gradient without requiring detailed knowledge of the microstructure. Motivated by the relative difficulty of obtaining analytical solutions to boundary value problems for FGMs, an accurate finite-element code is developed for obtaining numerical planar and axisymmetric linear thermoelastic solutions. In addition an approximate analytical technique for mapping homogeneous-modulus solutions to those for FGMs is assessed and classes of problems to which it applies accurately are identified. The fracture mechanics analysis of FGMs can be characterized by the classic stress intensities, KI and KII, but there has been scarce progress in understanding the role of the modulus gradient in determining fracture initiation and propagation. To address this question, a statistical fracture model is used to correlate near-tip stresses with brittle fracture initiation behavior. This describes the behavior of a material experiencing fracture initiation away from the crack tip. Widely dispersed zones of fracture initiation sites are expected. Finite-length kinks are analyzed to describe the crack …
Date: May 1, 2000
Creator: Becker, Terrence Lee
System: The UNT Digital Library
Measurement of Deuteron Tensor Polarization in Elastic Electron Scattering (open access)

Measurement of Deuteron Tensor Polarization in Elastic Electron Scattering

None
Date: November 1, 2000
Creator: Gustafsson, Kenneth K.
System: The UNT Digital Library
Properties of Group Five and Group Seven transactinium elements (open access)

Properties of Group Five and Group Seven transactinium elements

The detection and positive identification of the short-lived, low cross section isotopes used in the chemical studies of the heaviest elements are usually accomplished by measuring their alpha-decay, thus the nuclear properties of the heaviest elements must be examined simultaneously with their chemical properties. The isotopes 224 Pa and 266,267 Bh have been studied extensively as an integral part of the investigation of the heaviest members of the groups five and seven of the periodic table. The half-life of 224 Pa was determined to be 855 plus/minus19 ms by measuring its alpha-decay using our rotating wheel, solid state detector system at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. Protactinium was produced by bombardment of a bismuth target. New neutron rich isotopes, 267 Bh and 266 Bh, were produced in bombardments of a 249 Bk target and their decay was observed using the rotating wheel system. The 266 Bh that was produced decays with a half-life of approximately 1 s by emission of alpha particles with an average energy of 9.25 plus/minus 0.03 MeV. 267 Bh was observed to decay with a 17 s half-life by emission of alpha-particles with an average energy of 8.83 plus/minus 0.03 MeV. The chemical behavior …
Date: May 1, 2001
Creator: Wilk, Philip A.
System: The UNT Digital Library
The ideal strength and mechanical hardness of solids (open access)

The ideal strength and mechanical hardness of solids

Relationships between intrinsic mechanical hardness and atomic-scale properties are reviewed, Hardness scales closely and linearly with shear modulus for a given class of material (covalent, ionic or metallic). A two-parameter fit and a Peierls-stress model produce a more universal scaling relationship, but no model can explain differences in hardness between the transition metal carbides and nitrides. Calculations of ''ideal strength'' (defined by the limit of elastic stability of a perfect crystal) are proposed. The ideal shear strengths of fcc aluminum and copper are calculated using ab initio techniques and allowing for structural relaxation of all five strain components other than the imposed strain. The strengths of Al and Cu are similar (8-9% of the shear modulus), but the geometry of the relaxations in Al and Cu is very different. The relaxations are consistent with experimentally measured third-order elastic constants. The general thermodynamic conditions of elastic stability that set the upper limits of mechanical strength are derived. The conditions of stability are shown for cubic (hydrostatic), tetragonal (tensile) and monoclinic (shear) distortions of a cubic crystal. The implications of this stability analysis to first-principles calculations of ideal strength are discussed, and a method to detect instabilities orthogonal to the direction of …
Date: April 1, 2000
Creator: Krenn, Christopher
System: The UNT Digital Library
Pump probe spectroscopy of quasiparticle dynamics in cuprate superconductors (open access)

Pump probe spectroscopy of quasiparticle dynamics in cuprate superconductors

Pump probe spectroscopy is used to examine the picosecond response of a BSCCO thin film, and two YBCO crystals in the near infrared. The role of pump fluence and temperature have been closely examined in an effort to clarify the mechanism by which the quasiparticles rejoin the condensate. BSCCO results suggest that the recombination behavior is consistent with the d-wave density of states in that quasiparticles appear to relax to the nodes immediately before they rejoin the condensate. The first substantial investigation of polarized pump probe response in detwinned YBCO crystals is also reported. Dramatic doping dependent anisotropies along the a and b axes are observed in time and temperature resolved studies. Among many results, we highlight the discovery of an anomalous temperature and time dependence of a- axis response in optimally doped YBCO. We also report on the first observation of the photoinduced response in a magnetic field. We find the amplitude of the response, and in some cases, the dynamics considerably changed with the application of a 6T field. Finally, we speculate on two of the many theoretical directions stimulated by our results. We find that the two-fluid model suggests a mechanism to explain how changes at very …
Date: May 1, 2001
Creator: Segre, Gino P.
System: The UNT Digital Library
Development and Implementation of Photonuclear Cross-Section Data for Mutually Coupled Neutron-Photon Transport Calculations in the Monte Carlo N-Particle (MCNP) Radiation Transport Code (open access)

Development and Implementation of Photonuclear Cross-Section Data for Mutually Coupled Neutron-Photon Transport Calculations in the Monte Carlo N-Particle (MCNP) Radiation Transport Code

The fundamental motivation for the research presented in this dissertation was the need to development a more accurate prediction method for characterization of mixed radiation fields around medical electron accelerators (MEAs). Specifically, a model is developed for simulation of neutron and other particle production from photonuclear reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport code. This extension of the capability within the MCNP code provides for the more accurate assessment of the mixed radiation fields. The Nuclear Theory and Applications group of the Los Alamos National Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a select group of isotopes. These data provide the reaction probabilities as functions of incident photon energy with angular and energy distribution information for all reaction products. The availability of these data is the cornerstone of the new methodology for state-of-the-art mutually coupled photon-neutron transport simulations. The dissertation includes details of the model development and implementation necessary to use the new photonuclear data within MCNP simulations. A new data format has been developed to include tabular photonuclear data. Data are processed from the Evaluated Nuclear Data Format (ENDF) to the new class ''u'' A Compact ENDF (ACE) format using a standalone processing …
Date: July 1, 2000
Creator: White, Morgan C.
System: The UNT Digital Library
Estimates of Radionuclide Loading to Cochiti Lake from Los Alamos Canyon Using Manual and Automated Sampling (open access)

Estimates of Radionuclide Loading to Cochiti Lake from Los Alamos Canyon Using Manual and Automated Sampling

None
Date: July 1, 2000
Creator: McLean, Christopher T.
System: The UNT Digital Library
Experimental and theoretical studies of picosecond laser interactions with electronic materials-laser ablation (open access)
A Spatial Discretization Scheme for Solving the Transport Equation on Unstructured Grids of Polyhedra (open access)

A Spatial Discretization Scheme for Solving the Transport Equation on Unstructured Grids of Polyhedra

In this work, we develop a new spatial discretization scheme that may be used to numerically solve the neutron transport equation. This new discretization extends the family of corner balance spatial discretizations to include spatial grids of arbitrary polyhedra. This scheme enforces balance on subcell volumes called corners. It produces a lower triangular matrix for sweeping, is algebraically linear, is non-negative in a source-free absorber, and produces a robust and accurate solution in thick diffusive regions. Using an asymptotic analysis, we design the scheme so that in thick diffusive regions it will attain the same solution as an accurate polyhedral diffusion discretization. We then refine the approximations in the scheme to reduce numerical diffusion in vacuums, and we attempt to capture a second order truncation error. After we develop this Upstream Corner Balance Linear (UCBL) discretization we analyze its characteristics in several limits. We complete a full diffusion limit analysis showing that we capture the desired diffusion discretization in optically thick and highly scattering media. We review the upstream and linear properties of our discretization and then demonstrate that our scheme captures strictly non-negative solutions in source-free purely absorbing media. We then demonstrate the minimization of numerical diffusion of a …
Date: November 1, 2000
Creator: Thompson, Kelly Glen
System: The UNT Digital Library