Accelerator Mass Spectrometry Measurements of Plutonium in Sediment and Seawater from the Marshall Islands (open access)

Accelerator Mass Spectrometry Measurements of Plutonium in Sediment and Seawater from the Marshall Islands

During the summer 2000, I was given the opportunity to work for about three months as a technical trainee at Lawrence Livermore National Laboratory, or LLNL as I will refer to it hereafter. University of California runs this Department of Energy laboratory, which is located 70 km east of San Francisco, in the small city of Livermore. This master thesis in Radioecology is based on the work I did here. LLNL, as a second U.S.-facility for development of nuclear weapons, was built in Livermore in the beginning of the 1950's (Los Alamos in New Mexico was the other one). It has since then also become a 'science center' for a number of areas like magnetic and laser fusion energy, non-nuclear energy, biomedicine, and environmental science. The Laboratory's mission has changed over the years to meet new national needs. The following two statements were found on the homepage of LLNL (http://www.llnl.gov), at 2001-03-05, where also information about the laboratory and the scientific projects that takes place there, can be found. 'Our primary mission is to ensure that the nation's nuclear weapons remain safe, secure, and reliable and to prevent the spread and use of nuclear weapons worldwide'. 'Our goal is to …
Date: August 1, 2001
Creator: Leisvik, M & Hamilton, T
System: The UNT Digital Library
Collisionless relaxation in beam-plasma systems (open access)

Collisionless relaxation in beam-plasma systems

This thesis reports the results from the theoretical investigations, both numerical and analytical, of collisionless relaxation phenomena in beam-plasma systems. Many results of this work can also be applied to other lossless systems of plasma physics, beam physics and astrophysics. Different aspects of the physics of collisionless relaxation and its modeling are addressed. A new theoretical framework, named Coupled Moment Equations (CME), is derived and used in numerical and analytical studies of the relaxation of second order moments such as beam size and emittance oscillations. This technique extends the well-known envelope equation formalism, and it can be applied to general systems with nonlinear forces. It is based on a systematic moment expansion of the Vlasov equation. In contrast to the envelope equation, which is derived assuming constant rms beam emittance, the CME model allows the emittance to vary through coupling to higher order moments. The CME model is implemented in slab geometry in the absence of return currents. The CME simulation yields rms beam sizes, velocity spreads and emittances that are in good agreement with particle-in-cell (PIC) simulations for a wide range of system parameters. The mechanism of relaxation is also considered within the framework of the CME system. It …
Date: May 1, 2001
Creator: Backhaus, Ekaterina Yu.
System: The UNT Digital Library
The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique (open access)

The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronic devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ({mu}TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this …
Date: May 1, 2001
Creator: Sutherland, Kevin Jerome
System: The UNT Digital Library
Drift compression and final focus systems for heavy ion inertial fusion (open access)

Drift compression and final focus systems for heavy ion inertial fusion

Longitudinal compression of space-charge dominated beams can be achieved by imposing a head-to-tail velocity tilt on the beam. This tilt has to be carefully tailored, such that it is removed by the longitudinal space-charge repulsion by the time the beam reaches the end of the drift compression section. The transverse focusing lattice should be designed such that all parts of the beam stay approximately matched, while the beam smoothly expands transversely to the larger beam radius needed in the final focus system following drift compression. In this thesis, several drift compression systems were designed within these constraints, based on a given desired pulse shape at the end of drift compression systems were designed within these constraints, based on a given desired pulse shape at the end of drift compression. The occurrence of mismatches due to a rapidly increasing current was analyzed. In addition, the sensitivity of drift compression to errors in the initial velocity tilt and current profile was studied. These calculations were done using a new computer code that accurately calculates the longitudinal electric field in the space-charge dominated regime.
Date: May 1, 2001
Creator: de Hoon, M.J.L.
System: The UNT Digital Library
Dualities in M-theory and Born-Infeld Theory (open access)

Dualities in M-theory and Born-Infeld Theory

We discuss two examples of duality. The first arises in the context of toroidal compactification of the discrete light cone quantization of M-theory. In the presence of nontrivial moduli coming from the M-theory three form, it has been conjectured that the system is described by supersymmetric Yang-Mills gauge theory on a noncommutative torus. We are able to provide evidence for this conjecture, by showing that the dualities of this M-theory compactification, which correspond to T-duality in Type IIA string theory, are also dualities of the noncommutative supersymmetric Yang-Mills description. One can also consider this as evidence for the accuracy of the Matrix Theory description of M-theory in this background. The second type of duality is the self-duality of theories with U(1) gauge fields. After discussing the general theory of duality invariance for theories with complex gauge fields, we are able to find a generalization of the well known U(1) Born-Infeld theory that contains any number of gauge fields and which is invariant under the maximal duality group. We then find a supersymmetric extension of our results, and also show that our results can be extended to find Born-Infeld type actions in any even dimensional spacetime.
Date: August 1, 2001
Creator: Brace, Daniel, M
System: The UNT Digital Library
Electroproduction DE Photons ET DE Pions Sur Le Proton AU Quadrimoment DE Transfert Q{Sup 2} = 1.0 Gev{Sup 2} (open access)

Electroproduction DE Photons ET DE Pions Sur Le Proton AU Quadrimoment DE Transfert Q{Sup 2} = 1.0 Gev{Sup 2}

Thesis on the virtual compton scattering experiment in Hall A at Jefferson Lab.
Date: November 1, 2001
Creator: Laveissiere, Geraud
System: The UNT Digital Library
Estimation of fracture porosity in an unsaturated fractured welded tuff using gas tracer testing (open access)

Estimation of fracture porosity in an unsaturated fractured welded tuff using gas tracer testing

None
Date: October 1, 2001
Creator: Freifeld, Barry
System: The UNT Digital Library
Evaluation of chiller modeling approaches and their usability for fault detection (open access)

Evaluation of chiller modeling approaches and their usability for fault detection

Selecting the model is an important and essential step in model based fault detection and diagnosis (FDD). Several factors must be considered in model evaluation, including accuracy, training data requirements, calibration effort, generality, and computational requirements. All modeling approaches fall somewhere between pure first-principles models, and empirical models. The objective of this study was to evaluate different modeling approaches for their applicability to model based FDD of vapor compression air conditioning units, which are commonly known as chillers. Three different models were studied: two are based on first-principles and the third is empirical in nature. The first-principles models are the Gordon and Ng Universal Chiller model (2nd generation), and a modified version of the ASHRAE Primary Toolkit model, which are both based on first principles. The DOE-2 chiller model as implemented in CoolTools{trademark} was selected for the empirical category. The models were compared in terms of their ability to reproduce the observed performance of an older chiller operating in a commercial building, and a newer chiller in a laboratory. The DOE-2 and Gordon-Ng models were calibrated by linear regression, while a direct-search method was used to calibrate the Toolkit model. The ''CoolTools'' package contains a library of calibrated DOE-2 curves …
Date: May 1, 2001
Creator: Sreedharan, Priya
System: The UNT Digital Library
Fast methods for static Hamilton-Jacobi Partial Differential Equations (open access)

Fast methods for static Hamilton-Jacobi Partial Differential Equations

The authors develop a family of fast methods approximating the solution to a wide class of static Hamilton-Jacobi partial differential equations. These partial differential equations are considered in the context of control-theoretic and front-propagation problems. In general, to produce a numerical solution to such a problem, one has to solve a large system of coupled non-linear discretized equations. The techniques use partial information about the characteristic directions to de-couple the system. Previously known fast methods, available for isotropic problems, are discussed in detail. They introduce a family of new Ordered Upwinding Methods (OUM) for general (anisotropic) problems and prove convergence to the viscosity solution of the corresponding Hamilton-Jacobi partial differential equation. The hybrid methods introduced here are based on the analysis of the role played by anisotropy in the context of front propagation and optimal trajectory problems. The performance of the methods is analyzed and compared to that of several other numerical approaches to these problems. Computational experiments are performed using test problems from control theory, computational geometry and seismology.
Date: May 1, 2001
Creator: Vladimirsky, Alexander Boris
System: The UNT Digital Library
Focus on NIF May 2001 (open access)

Focus on NIF May 2001

The National Ignition Facility, a stadium-size, 192-beam laser, is an essential tool for maintaining the safety and reliability of our nuclear weapons, harnessing fusion energy for future generations, and unlocking the origins of the universe. In the FY2001 Energy and Water Appropriations Act (FPN00-48), Congress appropriated $199.1 million for the continued construction of NIF. Immediately, $130 million became available. After March 31, 2001, $69.1 million was to be made available only after Department of Energy certification to Congress regarding six specific points: (1) recommend an appropriate path forward for the project; (2) certify that all established project and scientific milestones are on schedule and cost; (3) conduct 1st and 2nd quarter project reviews in FY01 and determine the project is on schedule and cost; (4) study alternatives to a 192-beam ignition facility for the stockpile stewardship program (SSP); (5) implement an integrated cost-schedule earned-value project control system; and (6) create a five-year budget plan for the SSP.
Date: May 1, 2001
Creator: Warner, B
System: The UNT Digital Library
Geographical and Temporal Dynamics of Chaetocnema Pulicaria Populations and Their Role in Stewart's Disease of Corn in Iowa (open access)

Geographical and Temporal Dynamics of Chaetocnema Pulicaria Populations and Their Role in Stewart's Disease of Corn in Iowa

This thesis is organized into five chapters. Chapter 1 is the introduction and justification, chapters 2 and 3 are journal papers, chapter 4 is a preliminary analysis of winter environmental variables and their use in forecasting for Stewart's disease of corn, and chapter 5 is general conclusions and discussion. References can be found at the end of each chapter, except chapter 5 and are specific to that chapter.
Date: May 1, 2001
Creator: Esker, Paul David
System: The UNT Digital Library
High Precision Spectroscopy of Lambda-Hypernuclei by (e, e' K{sup +}) reaction and gamma-ray measurement (open access)

High Precision Spectroscopy of Lambda-Hypernuclei by (e, e' K{sup +}) reaction and gamma-ray measurement

Hypernuclei, with one nucleon converted into a hyperon and coupled back to the residual nuclear core, provide a new probe to study the hyperon-nucleon interaction and an additional strangeness degree of freedom to test the limit of our conventional nuclear models in solving the many body system. The First Lambda electroproduction experiment E89009(HNSS) at JLAB focusing on the Lambda hypernuclear spectroscopy in p-shell achieved the best resolution( FWHM: 500-600 keV) ever reached in this field. The unnatural parity (spin-flip) states were observed for the first time on the 12 / Lambda B missing mass spectrum. The detailed hypernuclear structure of 9 / Lambda Be produced through (k{sup -}, pi{sup -}) reaction in BNL-AGS, was studied with the hypernuclear gamma-ray spectroscopy by using a large acceptance germanium detector (Hyperball) in experiment E-930.
Date: August 1, 2001
Creator: Zhu, Xiaofeng
System: The UNT Digital Library
High-Tc SQUIDs: Noise and applications (open access)

High-Tc SQUIDs: Noise and applications

None
Date: August 1, 2001
Creator: Cho, Hsiao-Mei
System: The UNT Digital Library
Inertial Confinement Fusion Annual Report 1999 (open access)

Inertial Confinement Fusion Annual Report 1999

The ICF Program has undergone a significant change in 1999 with the decommissioning of the Nova laser and the transfer of much of the experimental program to the OMEGA laser at the University of Rochester. The Nova laser ended operations with the final experiment conducted on May 27, 1999. This marked the end to one of DOE's most successful experimental facilities. Since its commissioning in 1985, Nova performed 13,424 experiments supporting ICF, Defense Sciences, high-power laser research, and basic science research. At the time of its commissioning, Nova was the world's most powerful laser. Its early experiments demonstrated that 3{omega} light could produce high-drive, low-preheat environment required for indirect-drive ICE. In the early 1990s, the technical program on Nova for indirect drive ignition was defined by the Nova technical contract established by National Academy Review of ICF in 1990. Successful completion of this research program contributed significantly to the recommendation by the ICF Advisory Committee in 1995 to proceed with the construction of the National Ignition Facility? Nova experiments also demonstrated the utility of high-powered lasers for studying the physics of interest to Defense Sciences. Now, high-powered lasers along with pulsed-power machines are the principal facilities for studying high energy …
Date: July 1, 2001
Creator: Kauffman, R.
System: The UNT Digital Library
The Influence of Ergonomics Training on Employee Behavior at Los Alamos National Laboratory (open access)

The Influence of Ergonomics Training on Employee Behavior at Los Alamos National Laboratory

A survey of employee behavior was conducted at Los Alamos National Laboratory (LANL). The objective of this study was to evaluate the prevalence of ergonomic behavior that decreased the chance of having a work-related musculoskeletal disorder (WMSD) among employees. The null hypothesis was tested to determine if there was a significant difference in ergonomic behavior between trained and untrained employees. The LANL employees were stratified by job series and then randomly selected to participate. The data were gathered using an electronic self-administered behavior questionnaire. The study population was composed of 6931 employees, and the response rate was 48%. The null hypothesis was rejected for twelve out of fifteen questions on the questionnaire. Logistic regression results indicate that the trained participants were more likely to report the risk-avoiding behavior, which supported the rejection of the null hypothesis for 60% of the questions. There was a higher frequency that the beneficial or risk-avoiding behavior was reported by the uninjured participants. Job series analysis revealed that ergonomics is an important issue among participants from all the job series. It also identified the occupational specialist classification (an administrative job), as the job series with the most occurrences of undesired ergonomic behaviors. In conclusion, there …
Date: January 1, 2001
Creator: Puckett, Leslie Guthrie
System: The UNT Digital Library
Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis (open access)

Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm{sub 2} for 40-{micro}m wells. This experimental set-up also can screen solid …
Date: May 1, 2001
Creator: Su, Hui
System: The UNT Digital Library
Mechanics of Metals with Phase Changes (open access)

Mechanics of Metals with Phase Changes

New experimental data is presented on some exotic metals that exhibit phase changes at cryogenic temperatures. The types of phase changes that were detected in the specific heat data range from martensitic (diffusion less) transitions to superconducting transitions. In addition, the charge density wave (CDW) state in uranium metal was detected in the specific heat. Specific-heat measurements were made in zero-magnetic field using an apparatus capable of obtaining temperatures as low as 0.4 K. Calibration performed on this apparatus, using a single-crystal copper sample, show its accuracy to be 0.50%, while the resolution was better than 0.1%. Our measurements demonstrate that similar high precision and accurate specific-heat measurements can be obtained on milligram-scale samples. In Chapters 2 and 3, specific-heat measurements are presented for the B2 (CsCl structure) alloy AuZn and for {alpha}-uranium (orthorhombic symmetry). The AuZn alloy exhibits a continuous transition at 64.75 K and an entropy of transition of ({Delta}S{sub tr}) 2.02 J K{sup {minus}1} mol{sup {minus}1}. Calculation of the Debye temperature, by extrapolating of the high temperature phase elastic constants to T = 0 K yields a value of 207 K ({+-}2 K), in favorable agreement with the calorimetric value of 219 K ({+-}0.50 K), despite the …
Date: January 1, 2001
Creator: Lashley, J.C.
System: The UNT Digital Library
National Ignition Facility (NIF) Focus Programs July 2001 Volume 1, No. 3 (open access)

National Ignition Facility (NIF) Focus Programs July 2001 Volume 1, No. 3

None
Date: July 1, 2001
Creator: Warner, B
System: The UNT Digital Library
Numerical Simulation of the Performance Characteristics, Instability, and Effects of Band Gap Grading in Cadmium Telluride Based Photovoltaic Devices (open access)

Numerical Simulation of the Performance Characteristics, Instability, and Effects of Band Gap Grading in Cadmium Telluride Based Photovoltaic Devices

Using computer simulations, the performance of several CdTe based photovoltaic structures has been studied. The advantages and disadvantages of band gap grading, through the use of (Zn,Cd)Te, have also been investigated in these structures. Grading at the front interface between a CdS window layer and a CdTe absorber layer, can arise due to interdiffusion between the materials during growth or due to the intentional variation of the material composition. This grading has been shown to improve certain performance metrics, such as the open-circuit voltage, while degrading others, such as the fill factor, depending on the amount and distance of the grading. The presence of a Schottky barrier as the back contact has also been shown to degrade the photovoltaic performance of the device, resulting in a characteristic IV curve. However, with the appropriate band gap grading at the back interface, it has been shown that the performance can be enhanced through more efficient carrier collection. These results were then correlated with experimental observations of the performance degradation in devices subjected to light and heat stress.
Date: May 1, 2001
Creator: Petersen, Michael David
System: The UNT Digital Library
Properties of Group Five and Group Seven transactinium elements (open access)

Properties of Group Five and Group Seven transactinium elements

The detection and positive identification of the short-lived, low cross section isotopes used in the chemical studies of the heaviest elements are usually accomplished by measuring their alpha-decay, thus the nuclear properties of the heaviest elements must be examined simultaneously with their chemical properties. The isotopes 224 Pa and 266,267 Bh have been studied extensively as an integral part of the investigation of the heaviest members of the groups five and seven of the periodic table. The half-life of 224 Pa was determined to be 855 plus/minus19 ms by measuring its alpha-decay using our rotating wheel, solid state detector system at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. Protactinium was produced by bombardment of a bismuth target. New neutron rich isotopes, 267 Bh and 266 Bh, were produced in bombardments of a 249 Bk target and their decay was observed using the rotating wheel system. The 266 Bh that was produced decays with a half-life of approximately 1 s by emission of alpha particles with an average energy of 9.25 plus/minus 0.03 MeV. 267 Bh was observed to decay with a 17 s half-life by emission of alpha-particles with an average energy of 8.83 plus/minus 0.03 MeV. The chemical behavior …
Date: May 1, 2001
Creator: Wilk, Philip A.
System: The UNT Digital Library
Pump probe spectroscopy of quasiparticle dynamics in cuprate superconductors (open access)

Pump probe spectroscopy of quasiparticle dynamics in cuprate superconductors

Pump probe spectroscopy is used to examine the picosecond response of a BSCCO thin film, and two YBCO crystals in the near infrared. The role of pump fluence and temperature have been closely examined in an effort to clarify the mechanism by which the quasiparticles rejoin the condensate. BSCCO results suggest that the recombination behavior is consistent with the d-wave density of states in that quasiparticles appear to relax to the nodes immediately before they rejoin the condensate. The first substantial investigation of polarized pump probe response in detwinned YBCO crystals is also reported. Dramatic doping dependent anisotropies along the a and b axes are observed in time and temperature resolved studies. Among many results, we highlight the discovery of an anomalous temperature and time dependence of a- axis response in optimally doped YBCO. We also report on the first observation of the photoinduced response in a magnetic field. We find the amplitude of the response, and in some cases, the dynamics considerably changed with the application of a 6T field. Finally, we speculate on two of the many theoretical directions stimulated by our results. We find that the two-fluid model suggests a mechanism to explain how changes at very …
Date: May 1, 2001
Creator: Segre, Gino P.
System: The UNT Digital Library
Study, design and realization of a Fabry-Perot cavity for the Compton polarimeter of TJNAF; Etude, conception et realisation d'une cavite Fabry-Perot pour le polarimetre Compton de TJNAF (open access)

Study, design and realization of a Fabry-Perot cavity for the Compton polarimeter of TJNAF; Etude, conception et realisation d'une cavite Fabry-Perot pour le polarimetre Compton de TJNAF

This is a doctoral dissertation, in French, on the subject of study, design and realization of a Fabry-Perot cavity for the Compton polarimeter of TJNAF.
Date: January 1, 2001
Creator: Falletto, M. Nicolas
System: The UNT Digital Library
Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214 (open access)

Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214

Thermodynamics has been studied systematically for the high temperature cuprate superconductor La{sub 2-x}Sr{sub x}CuO{sub 4-{delta}}, La-214, in the entire superconductive region from strongly underdoped to strongly overdoped regimes. Magnetization studies with H{parallel}c have been made in order to investigate the changes in free energy of the system as the number of carriers is reduced. Above the superconducting transition temperature, the normal-state magnetization exhibits a two-dimensional Heisenberg antiferromagnetic behavior. Below T{sub c}, magnetization data are thermodynamically reversible over large portions of the H-T plane, so the free energy is well defined in these regions. As the Sr concentration is varied over the wide range from 0.060 (strongly underdoped) to 0.234 (strongly overdoped), the free energy change goes through a maximum at the optimum doped in a manner similar to the T{sub c0} vs. x curve. The density of states, N(0), remains nearly constant in the overdoped and optimum doped regimes, taking a broad maximum around x = 0.188, and then drops abruptly towards zero in the underdoped regime. The La{sub 2-x}Sr{sub x}CuO{sub 4} (La-214) system displays the fluctuating vortex behavior with the characteristic of either 2D or 3D fluctuations as indicated by clearly identifiable crossing points T* close to T{sub c}. …
Date: May 1, 2001
Creator: Huh, Yung Moo
System: The UNT Digital Library
The VRFurnace: A Virtual Reality Application for Energy System Data Analysis (open access)

The VRFurnace: A Virtual Reality Application for Energy System Data Analysis

This paper presents the Virtual Reality Furnace (VRFurnace) application, an interactive 3-D visualization platform for pulverized coal furnace analysis. The VRFurnace is a versatile toolkit where a variety of different CFD data sets related to pulverized coal furnaces can be studied interactively. The toolkit combines standard CFD analysis techniques with tools that more effectively utilize the 3-D capabilities of a virtual environment. Interaction with data is achieved through a dynamic instructional menu system. The application has been designed for use in a projection-based system which allows engineers, management, and operators to see and interact with the data at the same time. Future developments are discussed and will include the ability to combine multiple power plant components into a single application, allow remote collaboration between different virtual environments, and allow users to make changes to a flow field and see the results of these changes as they are made creating a complete virtual power plant.
Date: May 1, 2001
Creator: Johnson, Peter Eric
System: The UNT Digital Library