Language

Correlations in bottom quark pair production at the Fermilab Tevatron (open access)

Correlations in bottom quark pair production at the Fermilab Tevatron

I present an analysis of b{bar b} pair production correlations, using dimuon-triggered data collected with the Collider Detector at Fermilab (CDF) in p{bar p} collisions at {radical}s = 1.96 TeV during Run II of the TeVatron. The leading order (LO) and next-to-leading order (NLO) b quark production processes are discriminated by the angular and momentum correlations between the b{bar b} pair. Track-level jets containing a muon are classified by b quark content and used to estimate the momentum vector of the progenitor b quark. The theoretical distributions given by the MC{at}NLO event generator are tested against the data.
Date: January 1, 2009
Creator: Galyardt, Jason Edward
System: The UNT Digital Library
Electrochemical arsenic remediation for rural Bangladesh (open access)

Electrochemical arsenic remediation for rural Bangladesh

Arsenic in drinking water is a major public health problem threatening the lives of over 140 million people worldwide. In Bangladesh alone, up to 57 million people drink arsenic-laden water from shallow wells. ElectroChemical Arsenic Remediation(ECAR) overcomes many of the obstacles that plague current technologies and can be used affordably and on a small-scale, allowing for rapid dissemination into Bangladesh to address this arsenic crisis. In this work, ECAR was shown to effectively reduce 550 - 580 mu g=L arsenic (including both As[III]and As[V]in a 1:1 ratio) to below the WHO recommended maximum limit of 10 mu g=L in synthetic Bangladesh groundwater containing relevant concentrations of competitive ions such as phosphate, silicate, and bicarbonate. Arsenic removal capacity was found to be approximately constant within certain ranges of current density, but was found to change substantially between ranges. In order of decreasing arsenic removal capacity, the pattern was: 0.02 mA=cm2> 0.07 mA=cm2> 0.30 - 1.1 mA=cm2> 5.0 - 100 mA=cm2. Current processing time was found to effect arsenic removal capacity independent of either charge density or current density. Electrode polarization studies showed no passivation of the electrode in the tested range (up to current density 10 mA=cm2) and ruled out oxygen …
Date: January 1, 2009
Creator: Addy, Susan Amrose
System: The UNT Digital Library
Measurement of the W boson mass and width using a novel recoil model (open access)

Measurement of the W boson mass and width using a novel recoil model

This dissertation presents a direct measurement of the W boson mass (M{sub W}) and decay width ({Lambda}{sub W}) in 1 fb{sup -1} of W {yields} e{nu} collider data at D0 using a novel method to model the hadronic recoil. The mass is extracted from fits to the transverse mass M{sub T}, p{sub T}(e), and E{sub T} distributions. The width is extracted from fits to the tail of the M{sub T} distribution. The electron energy measurement is simulated using a parameterized model, and the recoil is modeled using a new technique by which Z recoils are chosen from a data library to match the p{sub T} and direction of each generated W boson. We measure the the W boson mass to be M{sub W} = 80.4035 {+-} 0.024(stat) {+-} 0.039(syst) from the M{sub T}, M{sub W} = 80.4165 {+-} 0.027(stat) {+-} 0.038(syst) from the pT(e), and MW = 80.4025 {+-} 0.023(stat) {+-} 0.043(syst) from the E{sub T} distributions. {Lambda}{sub W} is measured to be {Lambda}{sub W} = 2.025 {+-} 0.038(stat) {+-} 0.061(syst) GeV.
Date: January 1, 2009
Creator: Wetstein, Matthew J.
System: The UNT Digital Library
ROMP-based polymer composites and biorenewable rubbers (open access)

ROMP-based polymer composites and biorenewable rubbers

This research is divided into two related topics. In the first topic, the synthesis and characterization of novel composite materials reinforced with MWCNTs by ring-opening metathesis polymerization (ROMP) is reported for two ROMP based monomers: dicyclopentadiene (DCPD) and 5-ethylidene-2-norbornene (ENB). Homogeneous dispersion of MWCNTs in the polymer matrices is achieved by grafting norbornene moieties onto the nanotube surface. For the DCPD-based system, the investigation of mechanical properties of the composites shows a remarkable increase of tensile toughness with just 0.4 wt % of functionalized MWCNTs (f-MWCNTs). To our knowledge, this represents the highest toughness enhancement efficiency in thermosetting composites ever reported. DMA results show that there is a general increase of thermal stability (rg) with the addition of f-MWCNTs, which means that covalently bonded f-MWCNTs can reduce the local chain mobility of the matrix by interfacial interactions. The ENB system also shows significant enhancement of the toughness using just 0.8 wt % f-MWCNTs. These results indicate that the ROMP approach for polyENB is also very effective. The second topic is an investigation of the biorenewable rubbers synthesized by the tandem ROMP and cationic polymerization. The resin consists of a norbornenyl-modified linseed oil and a norbornene diester. Characterization of the bio-based …
Date: January 1, 2009
Creator: Jeong, Wonje
System: The UNT Digital Library
Search for non-standard model signatures in the WZ/ZZ final state at CDF run II (open access)

Search for non-standard model signatures in the WZ/ZZ final state at CDF run II

This thesis discusses a search for non-Standard Model physics in heavy diboson production in the dilepton-dijet final state, using 1.9 fb{sup -1} of data from the CDF Run II detector. New limits are set on the anomalous coupling parameters for ZZ and WZ production based on limiting the production cross-section at high {cflx s}. Additionally limits are set on the direct decay of new physics to ZZ andWZ diboson pairs. The nature and parameters of the CDF Run II detector are discussed, as are the influences that it has on the methods of our analysis.
Date: January 1, 2009
Creator: Norman, Matthew & /UC, San Diego
System: The UNT Digital Library
Search for the Higgs boson produced in association with a W boson at CDF Run II (open access)

Search for the Higgs boson produced in association with a W boson at CDF Run II

We present a search for standard model Higgs boson production in association with a W boson in proton-antiproton collisions (p{bar p} {yields} W{sup {+-}}H {yields} {ell}{nu}b{bar b}) at a center of mass energy of 1.96 TeV. WH candidate events have a signature of a single lepton (E{sup {+-}}/{mu}{sup {+-}}), missing transverse energy, and two jets. The search looks for candidate events in approximately 2.7 fb{sup -1} of data recorded with the CDF II detector. The high-p{sub T} lepton (e,{mu}) in the events provides a distinct signature for triggering and most of the events in the dataset come from high-p{sub t} lepton triggers. Our analysis improves on prior searches by including events recorded on the E{sub T} + 2 Jets trigger with a lepton reconstructed as an isolated high-p{sub T} charged particle. We increase the sample purity by identifying ('tagging') long-lived b-hadrons in jets. A neural network combines distinguishing kinematic information into a function optimized for WH sensitivity. The neural network output distributions are consistent with the standard model background expectations and we set limits upper limits on the rate of Higgs production. We set 95% confidence level upper limits on the WH production cross section times branching ratio for Higgs …
Date: January 1, 2009
Creator: Slaunwhite, Jason Michael
System: The UNT Digital Library
Structural/magnetic phase transitions and superconductivity in Ba(Fe<sub>1-x</sub>TM<sub>x</sub>)<sub>2</sub>As<sub>2</sub> (TM=Co, Ni, Cu, Co/Cu, Rh and Pd) single crystals (open access)

Structural/magnetic phase transitions and superconductivity in Ba(Fe<sub>1-x</sub>TM<sub>x</sub>)<sub>2</sub>As<sub>2</sub> (TM=Co, Ni, Cu, Co/Cu, Rh and Pd) single crystals

Since its discovery in 1911, superconductivity has been one of the most actively studied fields in condensed matter physics and has attracted immense experimental and theoretical effort. At this point in time, with more and more superconductors discovered in elements, alloys, intermetallic compounds and oxides, it is becoming clear that superconductivity is actually not so rare in nature. Almost half of the elements in the periodic table and hundreds of compounds have been found to be superconducting. Fig. 1.1 shows the milestones in discovering higher T<sub>c</sub> superconductors. Among the elemental superconductors, Niobium has the highest superconducting transition temperature, T<sub>c</sub>, of 9.5 K. This record held for more than ten years, until the discovery of niobium nitride which superconducts below 16 K. It took another thirty years for T<sub>c</sub> to increase from 16 K in niobium nitride to 23 K in niobium germanium.
Date: January 1, 2009
Creator: Ni, Ni
System: The UNT Digital Library
A Study of Charged Current Single Charged Pion Productions on Carbon in a Few-GeV Neutrino Beam (open access)

A Study of Charged Current Single Charged Pion Productions on Carbon in a Few-GeV Neutrino Beam

Understanding single charged pion production via neutrino-nucleus charged current interaction in the neutrino energy region of a few GeV is essential for future neutrino oscillation experiments since this process is a dominant background for {nu}{sub {mu}} {yields} {nu}{sub x} oscillation measurements. There are two contributions to this process: single pion production via baryonic resonance ({nu}{sub {mu}}N {yields} {mu}{sup -} N{pi}{sup +}) and coherent pion production interacting with the entire nucleus ({nu}{sub {mu}}A {yields} {mu}{sup -} A{pi}{sup +}), where N is nucleon in the nucleus and A is the nucleus. The purpose of the study presented in this thesis is a precise measurement of charged current single charged pion productions, resonant and coherent pion productions, with a good final state separation in the neutrino energy region of a few GeV. In this thesis, we focus on the study of charged current coherent pion production from muon neutrinos scattering on carbon, {nu}{sub {mu}} {sup 12}C {yields} {mu}{sup -12}C{pi}{sup +}, in the SciBooNE experiment. This is motivated by the fact that without measuring this component first, the precise determination of resonant pion production cross section can not be achieved since the contribution of coherent pion production in the region of small muon scattering …
Date: January 1, 2009
Creator: Hiraide, Katsuki & U., /Kyoto
System: The UNT Digital Library
Surface modes at metallic an photonic crystal interfaces (open access)

Surface modes at metallic an photonic crystal interfaces

A surface mode is an electromagnetic field distribution bounded at a surface. It decays exponentially with the distance from the surface on both sides of the surface and propagates at the surface. The surface mode exists at a metal-dielectric interface as surface plasmon (1) or at a photonic crystal surface terminated properly (34; 35; 36). Besides its prominent near-filed properties, it can connect structures at its propagation surface and results in far-field effects. Extraordinary transmission (EOT) and beaming are two examples and they are the subjects I am studying in this thesis. EOT means the transmission through holes in an opaque screen can be much larger than the geometrical optics limitation. Based on our everyday experience about shadows, the transmission equals the filling ratio of the holes in geometrical optics. The conventional diffraction theory also proved that the transmission through a subwavelength circular hole in an infinitely thin perfect electric conductor (PEC) film converges to zero when the hole's dimension is much smaller than the wavelength (40). Recently it is discovered that the transmission can be much larger than the the filling ratio of the holes at some special wavelengths (41). This cannot be explained by conventional theories, so it …
Date: January 1, 2009
Creator: Dai, Weitao
System: The UNT Digital Library
Synthesis, characterization, and application of surface-functionalized ordered mesoporous nanoparticles (open access)

Synthesis, characterization, and application of surface-functionalized ordered mesoporous nanoparticles

The dissertation begins with Chapter 1, which is a general introduction of the fundamental synthesis of mesoporous silica materials, the selective functionlization of mesoporous silica materials, and the synthesis of nanostructured porous materials via nanocasting. In Chapter 2, the thermo-responsive polymer coated mesoporous silica nanoparticles (MSN) was synthesized via surface-initated polymerization and exhibited unique partition activities in a biphasic solution with the thermally induced change. In Chapter 3, the monodispersed spherical MSN with different mesoporous structure (MCM-48) was developed and employed as a template for the synthesis of mesoporous carbon nanoparticles (MCN) via nanocasting. MCN was demonstrated for the delivery of membrane impermeable chemical agents inside the cells. The cellular uptake efficiency and biocompabtibility of MCN with human cervical cancer cells were also investigated. In addition to the biocompabtibility of MCN, MCN was demonstrated to support Rh-Mn nanoparticles for catalytic reaction in Chapter 4. Owing to the unique mesoporosity, Rh-Mn nanoparticles can be well distributed inside the mesoporous structure and exhibited interesting catalytic performance on CO hydrogenation. In Chapter 5, the synthesis route of the aforementioned MCM-48 MSN was discussed and investigated in details and other metal oxide nanoparticles were also developed via nanocasting by using MCM-48 MSN as a …
Date: January 1, 2009
Creator: Chung, Po-Wen
System: The UNT Digital Library