Merlin Classifier System (open access)

Merlin Classifier System

There is a natural tendency for biological systems to change as their environments change. The fittest in the biological systems survive, adapt to their environment, and multiply while the weakest in the environment diminish. There have been attempts in computer science to model the processes of natural selection and survival which occur in biological systems in order to obtain more efficient and effective machine-learning algorithms. Genetic algorithms are the result of these attempts.
Date: May 1991
Creator: Pantermuehl, Brenda N.
System: The UNT Digital Library
Field Programmable Devices and Reconfigurable Computing (open access)

Field Programmable Devices and Reconfigurable Computing

The motivation behind this research has been the idea of the capability of the computing device to dynamically reconfigure itself. The goal of this work is to measure the computational power of reconfigurable machines rather in an abstract manner by proposing a model the FPGAs abstract computing machines. Modeling FPGAs in terms of Automata Theory would give a base to answer more fundamental questions about the capabilities and possible answers. If a Finite State Machine (FSM) or a Turing Machine (TM) has the capability of reconfiguring its finite control, does this ability give the abstract computing device new computational power. In other words is a reconfigurable FSM, TM or a Cellular Automata more powerful than their corresponding non-configurable versions?
Date: December 1995
Creator: Koyuncu, Osman
System: The UNT Digital Library
A Neural Network Configuration Compiler Based on the Adaptrode Neuronal Model (open access)

A Neural Network Configuration Compiler Based on the Adaptrode Neuronal Model

A useful compiler has been designed that takes a high level neural network specification and constructs a low level configuration file explicitly specifying all network parameters and connections. The neural network model for which this compiler was designed is the adaptrode neuronal model, and the configuration file created can be used by the Adnet simulation engine to perform network experiments. The specification language is very flexible and provides a general framework from which almost any network wiring configuration may be created. While the compiler was created for the specialized adaptrode model, the wiring specification algorithms could also be used to specify the connections in other types of networks.
Date: December 1992
Creator: McMichael, Lonny D. (Lonny Dean)
System: The UNT Digital Library
DRVBLD: a UNIX Device Driver Builder (open access)

DRVBLD: a UNIX Device Driver Builder

New peripheral devices are being developed at an ever increasing rate. Before such accessories can be used in the UNIX environment (UNIX is a trademark of Bell Laboratories), they must be able to communicate with the operating system. This involves writing a device driver for each device. In order to do this, very detailed knowledge is required of both the device to be integrated and the version of UNIX to which it will be attached. The process is long, detailed and prone to subtle problems and errors. This paper presents a menu-driven utility designed to simplify and accelerate the design and implementation of UNIX device drivers by freeing developers from many of the implementation specific low-level details.
Date: May 1992
Creator: Cano, Agustin F.
System: The UNT Digital Library
Intrinsic and Extrinsic Adaptation in a Simulated Combat Environment (open access)

Intrinsic and Extrinsic Adaptation in a Simulated Combat Environment

Genetic algorithm and artificial life techniques are applied to the development of challenging and interesting opponents in a combat-based computer game. Computer simulations are carried out against an idealized human player to gather data on the effectiveness of the computer generated opponents.
Date: May 1995
Creator: Dombrowsky, Steven P. (Steven Paul)
System: The UNT Digital Library
Symplectic Integration of Nonseparable Hamiltonian Systems (open access)

Symplectic Integration of Nonseparable Hamiltonian Systems

Numerical methods are usually necessary in solving Hamiltonian systems since there is often no closed-form solution. By utilizing a general property of Hamiltonians, namely the symplectic property, all of the qualities of the system may be preserved for indefinitely long integration times because all of the integral (Poincare) invariants are conserved. This allows for more reliable results and frequently leads to significantly shorter execution times as compared to conventional methods. The resonant triad Hamiltonian with one degree of freedom will be focused upon for most of the numerical tests because of its difficult nature and, moreover, analytical results exist whereby useful comparisons can be made.
Date: May 1996
Creator: Curry, David M. (David Mason)
System: The UNT Digital Library