Degree Discipline

2 Matching Results

Results open in a new window/tab.

Forest Landscape Dynamics: a Semi-Markov Modeling Approach (open access)

Forest Landscape Dynamics: a Semi-Markov Modeling Approach

A transition model (MOSAIC) is used to describe forest dynamics at the landscape scale. The model uses a semi-Markov framework by considering transition probabilities and Erlang distributed holding times in each transition. Parameters for the transition model are derived from a gap model (ZELIG). This procedure ensures conceptual consistency of the landscape model with the fine scale ecological detail represented by the forest gap model. Spatial heterogeneity in the transition model is driven by maps of terrain with characteristics contained in a Geographic Information System (GIS) database. The results of the transition model simulations, percent cover forest type maps, are exported to grid-maps in the GIS. These cover type maps can be classified and used to describe forest dynamics using landscape statistics metrics. The linkage model-GIS enhances the transition model spatial analytical capabilities. A parameterization algorithm was developed that takes as input gap model tracer files which contain the percent occupation of each cover type through time. As output, the algorithm produces a file that contains the parameter values needed for MOSAIC for each one of the possible transitions. Parameters for the holding time distribution were found by calculating an empirical estimate of the cumulative probability function and using a …
Date: August 1997
Creator: Ablan, Magdiel
System: The UNT Digital Library
Conception and Design of Constructed Wetland Systems to Treat Wastewater at the Biosphere 2 Center with Use of Reaction Rate Models and the Habitat Evaluation Procedure to Determine the Effects of Designing for Wildlife Habitat on Treatment Efficiency (open access)

Conception and Design of Constructed Wetland Systems to Treat Wastewater at the Biosphere 2 Center with Use of Reaction Rate Models and the Habitat Evaluation Procedure to Determine the Effects of Designing for Wildlife Habitat on Treatment Efficiency

A study was undertaken to explore relationships between wetland characteristics which make them efficient water purifiers versus their ability to serve as wildlife habitat. The effects of designing constructed wetlands for improved habitat on water treatment efficiencies were quantified. Results indicate that some sacrifice in treatment efficiency is required and that the degree of efficiency reduction is dependant upon pollutant loading rates. However, sacrifice in efficiency is much smaller than increase in habitat quality, and can be offset by increasing wetland area. A practical, theoretical application was then attempted.
Date: May 1998
Creator: Clingenpeel, Glenn C. (Glenn Christopher)
System: The UNT Digital Library