52 Matching Results

Results open in a new window/tab.

Scanning Tunneling Microscopy of Epitaxial Diamond (110) and (111) Films and Field Emission Properties of Diamond Coated Molybdenum Microtips (open access)

Scanning Tunneling Microscopy of Epitaxial Diamond (110) and (111) Films and Field Emission Properties of Diamond Coated Molybdenum Microtips

The growth mechanism of chemical vapor deposition (CVD) grown homo-epitaxial diamond (110) and (111) films was studied using ultrahigh vacuum (UHV) scanning tunneling microscopy (STM). In addition, the field emission properties of diamond coated molybdenum microtips were studied as a function of exposure to different gases.
Date: May 1998
Creator: Lim, Seong-Chu
System: The UNT Digital Library
L-Shell X-Ray Production Cross Sections for ₂₀Ca, ₂₆Fe, ₂₈Ni, ₂₉Cu, ₃₀Zn, ₃₁Ga, and ₃₂Ge by Hydrogen, Helium, and Lithium Ions (open access)

L-Shell X-Ray Production Cross Sections for ₂₀Ca, ₂₆Fe, ₂₈Ni, ₂₉Cu, ₃₀Zn, ₃₁Ga, and ₃₂Ge by Hydrogen, Helium, and Lithium Ions

L-shell x-ray production cross sections are presented for Fe, Ni, Cu, Zn, Ga, and Ge by 0.5- to 5.0-MeV protons and by 0.5- to 8.0-MeV helium ions and Ca, Fe, Ni, Cu, and Ge by 0.75- to 4.5-MeV lithium ions. These measurements are compared to the first Born theory and the perturbed-stationary- state theory with energy-loss, Coulomb deflection, and relativistic corrections (ECPSSR). The results are also compared to previous experimental investigations. The high precision x-ray measurements were performed with a windowless Si(Li) detector. The efficiency of the detector was determined by the use of thin target atomic-field bremsstrahlung produced by 66.5 keV electrons. The measured bremsstrahlung spectra were compared to theoretical bremsstrahlung distributions in order to obtain an efficiency versus energy curve. The targets for the measurement were manufactured by the vacuum evaporation of the target element onto thin foils of carbon. Impurities in the carbon caused interferences inthe L-shell x-ray peaks. Special cleansing procedures were developed that reduced the impurity concentrations in the carbon foil, making the use of less than 5 μg/cm^2 targets possible. The first Born theory is seen to greatly overpredict the data at low ion energies. The ECPSSR theory matches the data very well at …
Date: May 1992
Creator: McNeir, Michael Ridge
System: The UNT Digital Library
Ultrasensitive Technique for Measurement of Two-Photon Absorption (open access)

Ultrasensitive Technique for Measurement of Two-Photon Absorption

Intensive demands have arisen to characterize nonlinear optical properties of materials for applications involving optical limiters, waveguide switches and bistable light switches. The technique of Pulse Delay Modulation is described which can monitor nonlinear changes in transmission with shot noise limited signal-to-noise ratios even in the presence of large background signals. The theoretical foundations of the experiment are presented followed by actual measurements of beam depletion due to second harmonic generation in a LiIO3 crystal and two-photon absorption in the semiconductor ZnSe. Sensitivity to polarization rotation arising from the Kerr Effect in carbon disulfide, saturable absorber relaxation in modelocking dyes and photorefractive effects in ZnSe are demonstrated. The sensitivity of Pulse Delay Modulation is combined with Fabry-Perot enhancement to allow the measurement of two-photon absorption in a 0.46pm thick interference filter spacer layer. Also included is a study of nonlinear optical limiting arising from dielectric breakdown in gases.
Date: December 1991
Creator: Miller, Steven A. (Steven Alan)
System: The UNT Digital Library
Numerical Investigations of Quantum Effects of Chaos (open access)

Numerical Investigations of Quantum Effects of Chaos

The quantum dynamics of minimum uncertainty wave packets in a system described by the surface-state-electron (SSE) Hamiltonian are studied herein.
Date: August 1993
Creator: Miroslaw, Latka
System: The UNT Digital Library
Experimental Synchronization of Chaotic Attractors Using Control (open access)

Experimental Synchronization of Chaotic Attractors Using Control

The focus of this thesis is to theoretically and experimentally investigate two new schemes of synchronizing chaotic attractors using chaotically operating diode resonators. The first method, called synchronization using control, is shown for the first time to experimentally synchronize dynamical systems. This method is an economical scheme which can be viably applied to low dimensional dynamical systems. The other, unidirectional coupling, is a straightforward means of synchronization which can be implemented in fast dynamical systems where timing is critical. Techniques developed in this work are of fundamental importance for future problems regarding high dimensional chaotic dynamical systems or arrays of mutually linked chaotically operating elements.
Date: December 1994
Creator: Newell, Timothy C. (Timothy Charles)
System: The UNT Digital Library
Short-Period Transient Grating Measurement of Perpendicular Transport in GaAs/AlGaAs Multiple Quantum Wells (open access)

Short-Period Transient Grating Measurement of Perpendicular Transport in GaAs/AlGaAs Multiple Quantum Wells

In this thesis the author describes the use of transient grating techniques to study the transport of electrons and holes perpendicular to the layers of a GaAs/AlGaAs multiple quantum well (MQW).
Date: August 1994
Creator: Norwood, David P.
System: The UNT Digital Library
A Study of Some Biological Effects of Non-Ionizing Electromagnetic Radiation (open access)

A Study of Some Biological Effects of Non-Ionizing Electromagnetic Radiation

The experimental studies of this work were done using a microwave cavity spectrometer, Escherichia coli (E-coli) bacteria, and other peripheral equipment. The experiment consists of two steps. First, a general survey of frequencies from 8 GHz to 12 GHz was made. Second, a detailed experiment for specific frequencies selected from the first survey were further studied. Interesting frequency dependent results, such as unusually higher growing or killing rates of E-coli at some frequencies, were found. It is also concluded that some results are genetic, that is, the 2nd, and 3rd subcultures showed the same growing status as the 1st cultures.
Date: December 1996
Creator: Park, Young C. (Young Chul), 1960-
System: The UNT Digital Library
Charge State Distributions in Molecular Dissociation (open access)

Charge State Distributions in Molecular Dissociation

The present work provides charge state fractions that may be used to generate TEAMS relative sensitivity factors for impurities in semiconductor materials.
Date: December 1998
Creator: Renfrow, Steven N. (Steven Neal)
System: The UNT Digital Library
Quantum-Confined CdS Nanoparticles on DNA Templates (open access)

Quantum-Confined CdS Nanoparticles on DNA Templates

As electronic devices became smaller, interest in quantum-confined semiconductor nanostructures increased. Self-assembled mesoscale semiconductor structures of II-VI nanocrystals are an especially exciting subject because of their controllable band gap and unique photophysical properties. Several preparative methods to synthesize and control the sizes of the individual nanocrystallites and the electronic and optical properties have been intensively studied. Fabrication of patterned nanostructures composed of quantum-confined nanoparticles is the next step toward practical applications. We have developed an innovative method to fabricate diverse nanostructures which relies on the size and a shape of a chosen deoxyribonucleic acid (DNA) template.
Date: May 1998
Creator: Rho, Young Gyu
System: The UNT Digital Library
Two-Fold Role of Randomness: A Source of Both Long-Range Correlations and Ordinary Statistical Mechanics (open access)

Two-Fold Role of Randomness: A Source of Both Long-Range Correlations and Ordinary Statistical Mechanics

The role of randomness as a generator of long range correlations and ordinary statistical mechanics is investigated in this Dissertation. The difficulties about the derivation of thermodynamics from mechanics are pointed out and the connection between the ordinary fluctuation-dissipation process and possible anomalous properties of statistical systems is highlighted.
Date: December 1998
Creator: Rocco, A. (Andrea)
System: The UNT Digital Library
Studies of Classically Chaotic Quantum Systems within the Pseudo-Probablilty Formalism (open access)

Studies of Classically Chaotic Quantum Systems within the Pseudo-Probablilty Formalism

The evolution of classically chaotic quantum systems is analyzed within the formalism of Quantum Pseudo-Probability Distributions. Due to the deep connections that a quantum system shows with its classical correspondent in this representation, the Pseudo-Probability formalism appears to be a useful method of investigation in the field of "Quantum Chaos." In the first part of the thesis we generalize this formalism to quantum systems containing spin operators. It is shown that a classical-like equation of motion for the pseudo-probability distribution ρw can be constructed, dρw/dt = (L_CL + L_QGD)ρw, which is rigorously equivalent to the quantum von Neumann-Liouville equation. The operator L_CL is undistinguishable from the classical operator that generates the semiclassical equations of motion. In the case of the spin-boson system this operator produces semiclassical chaos and is responsible for quantum irreversibility and the fast growth of quantum uncertainty. Carrying out explicit calculations for a spin-boson Hamiltonian the joint action of L_CL and L_QGD is illustrated. It is shown that the latter operator, L_QGD makes the spin system 'remember' its quantum nature, and competes with the irreversibility induced by the former operator. In the second part we test the idea of the enhancement of the quantum uncertainty triggered by …
Date: August 1992
Creator: Roncaglia, Roberto
System: The UNT Digital Library
Characterization and Field Emission Properties of Mo2C and Diamond Thin Films Deposited on Mo Foils and Tips by Electrophoresis (open access)

Characterization and Field Emission Properties of Mo2C and Diamond Thin Films Deposited on Mo Foils and Tips by Electrophoresis

In this dissertation M02C and diamond films deposited by electrophoresis on flat Mo foils and tips have been studied to determine their suitability as field emission tips.
Date: August 1999
Creator: Rouse, Ambrosio A., 1960-
System: The UNT Digital Library
Magneto-Optical and Chaotic Electrical Properties of n-InSb (open access)

Magneto-Optical and Chaotic Electrical Properties of n-InSb

This thesis investigation concerns the optical and nonlinear electrical properties of n-InSb. Two specific areas have been studied. First is the magneto-optical study of magneto-donors, and second is the nonlinear dynamic study of nonlinear and chaotic oscillations in InSb. The magneto-optical study of InSb provides a physical picture of the magneto-donor levels, which has an important impact on the physical model of nonlinear and chaotic oscillations. Thus, the subjects discussed in this thesis connect the discipline of semiconductor physics with the field of nonlinear dynamics.
Date: December 1991
Creator: Song, Xiang-Ning
System: The UNT Digital Library
Picosecond Dynamics of Free-Carrier Populations, Space-Charge Fields, and Photorefractive Nonlinearities in Zincblende Semiconductors (open access)

Picosecond Dynamics of Free-Carrier Populations, Space-Charge Fields, and Photorefractive Nonlinearities in Zincblende Semiconductors

Generally, nonlinear optics studies investigate optically-induced changes in refraction or absorption, and their application to spectroscopy or device fabrication. The photorefractive effect is a nonlinear optical effect that occurs in solids, where transport of an optically-induced free-carrier population results in an internal space-charge field, which produces an index change via the linear electrooptic effect. The photorefractive effect has been widely studied for a variety of materials and device applications, mainly because it allows large index changes to be generated with laser beams having only a few milliwatts of average power.Compound semiconductors are important photorefractive materials because they offer a near-infrared optical response, and because their carrier transport properties allow the index change to be generated quickly and efficiently. While many researchers have attempted to measure the fundamental temporal dynamics of the photorefractive effect in semiconductors using continuous-wave, nanosecond- and picosecond-pulsed laser beams, these investigations have been unsuccessful. However, studies with this goal are of clear relevance because they provide information about the fundamental physical processes that produce this effect, as well as the material's speed and efficiency limitations for device applications.In this dissertation, for the first time, we time-resolve the temporal dynamics of the photorefractive nonlinearities in two zincblende semiconductors, …
Date: August 1999
Creator: Stark, Thomas S.
System: The UNT Digital Library
On Chaos and Anomalous Diffusion in Classical and Quantum Mechanical Systems (open access)

On Chaos and Anomalous Diffusion in Classical and Quantum Mechanical Systems

The phenomenon of dynamically induced anomalous diffusion is both the classical and quantum kicked rotor is investigated in this dissertation. We discuss the capability of the quantum mechanical version of the system to reproduce for extended periods the corresponding classical chaotic behavior.
Date: August 1998
Creator: Stefancich, Marco
System: The UNT Digital Library
Charge State Dependence of M-Shell X-Ray Production in 67Ho by 2-12 MeV Carbon Ions (open access)

Charge State Dependence of M-Shell X-Ray Production in 67Ho by 2-12 MeV Carbon Ions

The charge state dependence of M-shell x-ray production cross sections of 67HO bombarded by 2-12 MeV carbon ions with and without K-vacancies are reported. The experiment was performed using an NEC 9SDH-2 tandem accelerator at the Ion Beam Modification and Analysis Laboratory of the University of North Texas. The high charge state carbon ions were produced by a post-accelerator stripping gas cell. Ultra-clean holmium targets were used in ion-atom collision to generate M-shell x rays at energies from 1.05 to 1.58 keV. The x-ray measurements were made with a windowless Si(Li) x-ray detector that was calibrated using radiative sources, particle induced x-ray emission (PIXE), and the atomic field bremsstrahlung (AFB) techniques.
Date: August 1994
Creator: Sun, Hsueh-Li
System: The UNT Digital Library
Studies of Particles and Wave Propagation in Periodic and Quasiperiodic Nonlinear Media (open access)

Studies of Particles and Wave Propagation in Periodic and Quasiperiodic Nonlinear Media

This thesis examines the properties of transmission and transport of light and charged particles in periodic or quasiperiodic systems of solid state and optics, especially the nonlinear and external field effects and the dynamic properties of these systems.
Date: May 1995
Creator: Sun, Ning, 1963-
System: The UNT Digital Library
Deterministic Brownian Motion (open access)

Deterministic Brownian Motion

The goal of this thesis is to contribute to the ambitious program of the foundation of developing statistical physics using chaos. We build a deterministic model of Brownian motion and provide a microscpoic derivation of the Fokker-Planck equation. Since the Brownian motion of a particle is the result of the competing processes of diffusion and dissipation, we create a model where both diffusion and dissipation originate from the same deterministic mechanism - the deterministic interaction of that particle with its environment. We show that standard diffusion which is the basis of the Fokker-Planck equation rests on the Central Limit Theorem, and, consequently, on the possibility of deriving it from a deterministic process with a quickly decaying correlation function. The sensitive dependence on initial conditions, one of the defining properties of chaos insures this rapid decay. We carefully address the problem of deriving dissipation from the interaction of a particle with a fully deterministic nonlinear bath, that we term the booster. We show that the solution of this problem essentially rests on the linear response of a booster to an external perturbation. This raises a long-standing problem concerned with Kubo's Linear Response Theory and the strong criticism against it by van …
Date: August 1993
Creator: Trefán, György
System: The UNT Digital Library
Evolution of Vacancy Supersaturations in MeV Si Implanted Silicon (open access)

Evolution of Vacancy Supersaturations in MeV Si Implanted Silicon

High-energy Si implantation into silicon creates a net defect distribution that is characterized by an excess of interstitials near the projected range and a simultaneous excess of vacancies closer to the surface. This defect distribution is due to the spatial separation between the distributions of interstitials and vacancies created by the forward momentum transferred from the implanted ion to the lattice atom. This dissertation investigates the evolution of the near-surface vacancy excess in MeV Si-implanted silicon both during implantation and post-implant annealing. Although previous investigations have identified a vacancy excess in MeV-implanted silicon, the investigations presented in this dissertation are unique in that they are designed to correlate the free-vacancy supersaturation with the vacancies in clusters. Free-vacancy (and interstitial) supersaturations were measured with Sb (B) dopant diffusion markers. Vacancies in clusters were profiled by Au labeling; a new technique based on the observation that Au atoms trap in the presence of open-volume defects. The experiments described in this dissertation are also unique in that they were designed to isolate the deep interstitial excess from interacting with the much shallower vacancy excess during post-implant thermal processing.
Date: May 1999
Creator: Venezia, Vincent C.
System: The UNT Digital Library
Dielectric Relaxation of Aqueous Solutions at Microwave Frequencies for 335 GHz. Using a Loaded Microwave Cavity Operating in the TM010 Mode (open access)

Dielectric Relaxation of Aqueous Solutions at Microwave Frequencies for 335 GHz. Using a Loaded Microwave Cavity Operating in the TM010 Mode

The frequency dependence and temperature dependence of the complex dielectric constant of water is of great interest. The temperature dependence of the physical properties of water given in the literature, specific heat, thermal conductivity, electric conductivity, pH, etc. are compared to the a. c. (microwave) and d. c. conductivity of water with a variety of concentration of different substances such as HC1, NaCl, HaS04, etc. When each of these properties is plotted versus inverse absolute temperature, it can be seen that each sample shows "transition temperatures". In this work, Slater's perturbation equations for a resonant microwave cavity were used to analyze the experimental results for the microwave data.
Date: August 1994
Creator: Wang, Henry F. S. (Henry Fu-Sen)
System: The UNT Digital Library
Nonlinear Optical Absorption and Refraction Study of Metallophthalocyanine Dyes (open access)

Nonlinear Optical Absorption and Refraction Study of Metallophthalocyanine Dyes

This dissertation deals with the characterization of the nonlinear absorption and refraction of two representative metallophthalocyanine dyes: chloro aluminum phthalocyanine dissolved in methanol, referred to as CAP, and a silicon naphthalocyanine derivative dissolved in toluene, referred to as SiNc. Using the Z-scan technique, the experiments are performed on both the picosecond and nanosecond timescales at a wavelength of 0.532 μm.
Date: December 1992
Creator: Wei, Tai-Huei
System: The UNT Digital Library
Optical Nonlinearities in Semiconductors for Limiting (open access)

Optical Nonlinearities in Semiconductors for Limiting

I have conducted detailed experimental and theoretical studies of the nonlinear optical properties of semiconductor materials useful for optical limiting. I have constructed optical limiters utilizing two-photon absorption along with photogenerated carrier defocusing as well as the bound electronic nonlinearity using the semiconducting material ZnSe. I have optimized the focusing geometry to achieve a large dynamic range while maintaining a low limiting energy for the device. The ZnSe monolithic optical limiter has achieved a limiting energy as low as 13 nJ (corresponding to 300W peak power) and a dynamic range as large as 105 at 532 nm using psec pulses. Theoretical analysis showed that the ZnSe device has a broad-band response covering the wavelength range from 550 nm to 800 nm. Moreover, I found that existing theoretical models (e.g. the Auston model and the band-resonant model using Boltzmann statistics) adequately describe the photo-generated carriers refractive nonlinearity in ZnSe. Material nonlinear optical parameters, such as the two-photon absorption coefficient β_2=5.5cm/GW, the refraction per unit carrier density σ_n=-0.8∗10^-21cm^3 and the bound electronic refraction n_2=-4∗10^-11esu, have been measured via time-integrated beam distortion experiments in the near field. A numerical code has been written to simulate the beam distortion in order to extract the …
Date: May 1990
Creator: Wu, Yuan-Yen
System: The UNT Digital Library
Diffusion Kinetics and Microstructure of Eutectic and Composite Solder/Copper Joints (open access)

Diffusion Kinetics and Microstructure of Eutectic and Composite Solder/Copper Joints

Sn/Pb solders are widely used by the electronics industry to provide both mechanical and electrical interconnections between electronic components and printed circuit boards. Solders with enhanced mechanical properties are required for high reliability for Surface Mount Technology (SMT) applications. One approach to improve the mechanical properties of solder is to add metallic or intermetallic particles to eutectic 63Sn/37Pb solder to form composite solders. Cu6Sn5 and Cu3Sn form and grow at the solder/copper substrate interface. The formation and growth of these intermetallics have been proposed as controlling mechanisms for solderability and reliability of solder/copper joints. The goal of this study was to investigate the diffusion kinetics and microstructures of six types of composite solder/copper joints.
Date: May 1994
Creator: Wu, Yujing
System: The UNT Digital Library
A Study of Quantum Electron Dynamics in Periodic Superlattices under Electric Fields (open access)

A Study of Quantum Electron Dynamics in Periodic Superlattices under Electric Fields

This thesis examines the quantum dynamics of electrons in periodic semiconductor superlattices in the presence of electric fields, especially uniform static fields. Chapter 1 is an introduction to this vast and active field of research, with an analysis and suggested solutions to the fundamental theoretical difficulties. Chapter 2 is a detailed historical review of relevant theories, and Chapter 3 is a historical review of experiments. Chapter 4 is devoted to the time-independent quantum mechanical study of the electric-field-induced changes in the transmission properties of ballistic electrons, using the transfer matrix method. In Chapter 5, a new time-dependent quantum mechanical model free from the fundamental theoretical difficulties is introduced, with its validity tested at various limiting cases. A simplified method for calculating field-free bands of various potential models is designed. In Chapter 6, the general features of "Shifting Periodicity", a distinctive feature of this new model, is discussed, and a "Bloch-Floquet Theorem" is rigorously proven. Numerical evidences for the existence of Wannier-Stark-Ladders are presented, and the conditions for its experimental observability is also discussed. In Chapter 7, an analytical solution is found for Bloch Oscillations and Wannier-Stark-Ladders at low electric fields. In Chapter 8, a new quantum mechanical interpretation for Bloch …
Date: May 1996
Creator: Yuan, Daiqing
System: The UNT Digital Library