Quality-of-Service Provisioning and Resource Reservation Mechanisms for Mobile Wireless Networks (open access)

Quality-of-Service Provisioning and Resource Reservation Mechanisms for Mobile Wireless Networks

In this thesis, a framework for Quality of Service provisioning in next generation wireless access networks is proposed. The framework aims at providing a differentiated service treatment to real-time (delay-sensitive) and non-real-time (delay-tolerant) multimedia traffic flows at the link layer. Novel techniques such as bandwidth compaction, channel reservation, and channel degradation are proposed. Using these techniques, we develop a call admission control algorithm and a call control block as part of the QoS framework. The performance of the framework is captured through analytical modeling and simulation experiments. By analytical modeling, the average carried traffic and the worst case buffer requirements for real-time and non-real-time calls are estimated. Simulation results show a 21% improvement in call admission probability of real-time calls, and a 17% improvement for non-real-time calls, when bandwidth compaction is employed. The channel reservation technique shows a 12% improvement in call admission probability in comparison with another proposed scheme in the literature.
Date: August 1998
Creator: Jayaram, Rajeev, 1971-
System: The UNT Digital Library
A Multi-Time Scale Learning Mechanism for Neuromimic Processing (open access)

A Multi-Time Scale Learning Mechanism for Neuromimic Processing

Learning and representing and reasoning about temporal relations, particularly causal relations, is a deep problem in artificial intelligence (AI). Learning such representations in the real world is complicated by the fact that phenomena are subject to multiple time scale influences and may operate with a strange attractor dynamic. This dissertation proposes a new computational learning mechanism, the adaptrode, which, used in a neuromimic processing architecture may help to solve some of these problems. The adaptrode is shown to emulate the dynamics of real biological synapses and represents a significant departure from the classical weighted input scheme of conventional artificial neural networks. Indeed the adaptrode is shown, by analysis of the deep structure of real synapses, to have a strong structural correspondence with the latter in terms of multi-time scale biophysical processes. Simulations of an adaptrode-based neuron and a small network of neurons are shown to have the same learning capabilities as invertebrate animals in classical conditioning. Classical conditioning is considered a fundamental learning task in animals. Furthermore, it is subject to temporal ordering constraints that fulfill the criteria of causal relations in natural systems. It may offer clues to the learning of causal relations and mechanisms for causal reasoning. The …
Date: August 1994
Creator: Mobus, George E. (George Edward)
System: The UNT Digital Library
Analysis of Memory Interference in Buffered Multi-processor Systems in Presence of Hot Spots and Favorite Memories (open access)

Analysis of Memory Interference in Buffered Multi-processor Systems in Presence of Hot Spots and Favorite Memories

In this thesis, a discrete Markov chain model for analyzing memory interference in multiprocessors, is presented.
Date: August 1995
Creator: Sen, Sanjoy Kumar
System: The UNT Digital Library
Study of Parallel Algorithms Related to Subsequence Problems on the Sequent Multiprocessor System (open access)

Study of Parallel Algorithms Related to Subsequence Problems on the Sequent Multiprocessor System

The primary purpose of this work is to study, implement and analyze the performance of parallel algorithms related to subsequence problems. The problems include string to string correction problem, to determine the longest common subsequence problem and solving the sum-range-product, 1 —D pattern matching, longest non-decreasing (non-increasing) (LNS) and maximum positive subsequence (MPS) problems. The work also includes studying the techniques and issues involved in developing parallel applications. These algorithms are implemented on the Sequent Multiprocessor System. The subsequence problems have been defined, along with performance metrics that are utilized. The sequential and parallel algorithms have been summarized. The implementation issues which arise in the process of developing parallel applications have been identified and studied.
Date: August 1994
Creator: Pothuru, Surendra
System: The UNT Digital Library
Practical Parallel Processing (open access)

Practical Parallel Processing

The physical limitations of uniprocessors and the real-time requirements of numerous practical applications have made parallel processing an essential technology in military, industry and scientific research. In this dissertation, we investigate parallelizations of three practical applications using three parallel machine models. The algorithms are: Finitely inductive (FI) sequence processing is a pattern recognition technique used in many fields. We first propose four parallel FI algorithms on the EREW PRAM. The time complexity of the parallel factoring and following by bucket packing is O(sk^2 n/p), and they are optimal under some conditions. The parallel factoring and following by hashing requires O(sk^2 n/p) time when uniform hash functions are used and log(p) ≤ k n/p and pm ≈ n. Their speedup is proportional to the number processors used. For these results, s is the number of levels, k is the size of the antecedents and n is the length of the input sequence and p is the number of processors. We also describe algorithms for raster/vector conversion based on the scan model to handle block-like connected components of arbitrary geometrical shapes with multi-level nested dough nuts for the IES (image exploitation system). Both the parallel raster-to-vector algorithm and parallel vector-to-raster algorithm require …
Date: August 1996
Creator: Zhang, Hua, 1954-
System: The UNT Digital Library
Linearly Ordered Concurrent Data Structures on Hypercubes (open access)

Linearly Ordered Concurrent Data Structures on Hypercubes

This thesis presents a simple method for the concurrent manipulation of linearly ordered data structures on hypercubes. The method is based on the existence of a pruned binomial search tree rooted at any arbitrary node of the binary hypercube. The tree spans any arbitrary sequence of n consecutive nodes containing the root, using a fan-out of at most [log₂ 𝑛] and a depth of [log₂ 𝑛] +1. Search trees spanning non-overlapping processor lists are formed using only local information, and can be used concurrently without contention problems. Thus, they can be used for performing broadcast and merge operations simultaneously on sets with non-uniform sizes. Extensions to generalized and faulty hypercubes and applications to image processing algorithms and for m-way search are discussed.
Date: August 1992
Creator: John, Ajita
System: The UNT Digital Library
An Efficient Hybrid Heuristic and Probabilistic Model for the Gate Matrix Layout Problem in VLSI Design (open access)

An Efficient Hybrid Heuristic and Probabilistic Model for the Gate Matrix Layout Problem in VLSI Design

In this thesis, the gate matrix layout problem in VLSI design is considered where the goal is to minimize the number of tracks required to layout a given circuit and a taxonomy of approaches to its solution is presented. An efficient hybrid heuristic is also proposed for this combinatorial optimization problem, which is based on the combination of probabilistic hill-climbing technique and greedy method. This heuristic is tested experimentally with respect to four existing algorithms. As test cases, five benchmark problems from the literature as well as randomly generated problem instances are considered. The experimental results show that the proposed hybrid algorithm, on the average, performs better than other heuristics in terms of the required computation time and/or the quality of solution. Due to the computation-intensive nature of the problem, an exact solution within reasonable time limits is impossible. So, it is difficult to judge the effectiveness of any heuristic in terms of the quality of solution (number of tracks required). A probabilistic model of the gate matrix layout problem that computes the expected number of tracks from the given input parameters, is useful to this respect. Such a probabilistic model is proposed in this thesis, and its performance is …
Date: August 1993
Creator: Bagchi, Tanuj
System: The UNT Digital Library
The Telecommunications Network Configuration Optimization Problem (open access)

The Telecommunications Network Configuration Optimization Problem

The purpose of telecommunication network configuration optimization is to find the best homing relationship between tandems and switches so as to minimize interswitch traffic, or equivalently to maximize intraswitch traffic. Note that, since minimal interswitch traffic implies minimal IMT utilization, communication costs will also be minimal.
Date: August 1995
Creator: Azizoglu, Mustafa C.
System: The UNT Digital Library