Degree Department

Adsorbate-enhanced Corrosion Processes at Iron and Iron Oxide Surfaces (open access)

Adsorbate-enhanced Corrosion Processes at Iron and Iron Oxide Surfaces

This study was intended to provide a fuller understanding of the surface chemical processes which result in the corrosion of ferrous materials.
Date: December 1994
Creator: Murray, Eric
System: The UNT Digital Library
Substitution Chemistry of the Cobalt Complexes [Co₂(CO)₆(PhC≡CR) (R=Ph, H) and PhCCo₃(CO)₉] with the Diphosphine Ligands [Bis(diphenylphosphino)maleic Anhydride (BMA) and (Z)-Ph₂PCH=CHPPh₂]. Reversible Chelate-to-Bridge Diphosphine Ligand Exchange, Phosphorus-Carbon Bond Cleavage and Phosphorus-Carbon Bond Formation (open access)

Substitution Chemistry of the Cobalt Complexes [Co₂(CO)₆(PhC≡CR) (R=Ph, H) and PhCCo₃(CO)₉] with the Diphosphine Ligands [Bis(diphenylphosphino)maleic Anhydride (BMA) and (Z)-Ph₂PCH=CHPPh₂]. Reversible Chelate-to-Bridge Diphosphine Ligand Exchange, Phosphorus-Carbon Bond Cleavage and Phosphorus-Carbon Bond Formation

The tricobalt cluster PhCCo3(CO)9 (1) reacts with the bidentate phosphine ligand 2,3-bis(diphenylphosphino)maleic anhydride (bma) in the presence of added Me3NO to give the diphosphine-substituted cluster PhCCo3(CO)7(bma) (2). Cluster 2 is unstable in solution, readily losing CO to afford Co3(CO)6[(μ2-η2/η1-C(Ph)C=C(PPh2)C(O)OC(O)](μ2-PPh2) (3) as the sole observed product. VT-31P NMR measurements on cluster 2 indicate that the bma ligand functions as both a chelating and a bridging ligand. At -97 °C, 31P NMR analysis of 2 reveals a Keq of 5.7 in favor of the bridging isomer. The bridged bma cluster 2 is the only observed species above -50°C. The solid-state structure of 2 does not correspond to the major bridging isomer observed in solution but rather the minor chelating isomer. The conversion of 2 to 3 followed first-order kinetics, with the reaction rates being independent of the nature of the reaction solvent and strongly suppressed by added CO, supporting a dissociative loss of CO as the rate-determining step. The activation parameters for CO loss were determined to be ΔH≠ = 29.9 ± 2.2 kcal/mol and ΔS≠ = 21.6 ± 6 eu.
Date: December 1994
Creator: Yang, Kaiyuan
System: The UNT Digital Library
The Synthesis and Chemistry of Polyciclic Cage Compounds (open access)

The Synthesis and Chemistry of Polyciclic Cage Compounds

Chapter I describes the synthesis of a trishomocubyl helical tubuland diol and some aspects of its inclusion chemistry. Thus, all three isomers of 4,7-dimethylpentacyclo[6.3.0.0^2,6.0^3,10.0^5,9]undecane-4,7-diol have been prepared and their X-ray structures have been determined. The syn,syn-isomer crystallizes in a double-stranded hydrogen-bonded lattice, while anti,syn-isomer forms a hydrogen-bonded layer lattice. In contrast, the anti,anti-isomer is a new member of the helical tubuland diol host family; its crystal lattice consists of parallel canals with a trefoil-shaped cross-section of area 25.4 Å^2. Chapter II describes the synthesis of new molecular clefts. These molecular clefts have been synthesized via base-promoted reactions of 3,6-diaryl-l,2,4,5-tetrazines with tetracyclo[6.3.0.0^4,11.0^5,9]undecane-3,6-dione and with tricyclo[6.3.0.0^2,6]undecane-3,11-dione, respectively. Compounds of this type are of interest as a potential new class of host molecules for use in host-guest complexation studies. Chapter III reports the synthesis of stereospecifically deuterated spiro(oxetane-3,8'-pentacyclo[5.4.0.0^2,6.0^3,10.0^5,9]undecanes) and their acid-promoted ring opening and concomitant rearrangements. The deuterium-containing reaction products have been characterized via analysis of their NMR and mass spectra. The results strongly suggest that intramolecular 1,5-hydride shifts provide an important pathway through which the acid promoted rearrangements occur. Chapter IV reports the oxidation of heptacyclo-[6.6.0.0^2,6.0^3,13.0^4,11.0^5,9.0^10,14] tetradecane (HCTD) via application of Barton's "GoAgg" systems. The products have been characterized by NMR and …
Date: December 1994
Creator: Wang, Yanjun
System: The UNT Digital Library
Regioselective Coupling Reactions of Diiodophenol Derivatives (open access)

Regioselective Coupling Reactions of Diiodophenol Derivatives

Palladium catalyzed reactions of derivatives of 2,4-diiodophenol are explored. Coupling reactions with a series of terminal alkynes and formylation are found to be efficient and regioselective. Coupling with stananne reagents and alkenes do not work. The nature of the oxygen protecting group is critical. The phytotoxic natural product, Eutypine, is synthesized by using regioselective formylation and alkyne coupling. An approach to the plant antimicrobial compound Plicatin B is examined.
Date: December 1994
Creator: Ji, Jianhua
System: The UNT Digital Library