Bioengineering Systems for Modulating Notch Signaling in Cardiovascular Development, Disease, and Regeneration (open access)

Bioengineering Systems for Modulating Notch Signaling in Cardiovascular Development, Disease, and Regeneration

This article is a review summarizing the significant roles of Notch signaling in individual cardiac cell types. It covers the bioengineering systems of microfluidics, hydrogel, spheroid, and 3D bioprinting and provides insights into ancillary supports of bioengineering systems, varied types of cardiovascular cells, and advanced characterization approaches in further refining Notch signaling in cardiovascular development, disease, and regeneration.
Date: September 30, 2021
Creator: Huerta Gomez, Angello; Joshi, Sanika; Yang, Yong; Tune, Johnathan D. & Zhao, Ming-Tao
System: The UNT Digital Library
In-vitro biomineralization and biocompatibility of friction stir additively manufactured AZ31B magnesium alloy-hydroxyapatite composites (open access)

In-vitro biomineralization and biocompatibility of friction stir additively manufactured AZ31B magnesium alloy-hydroxyapatite composites

Article presents research where friction stir additive manufacturing technique was employed to fabricate AZ31B magnesium-hydroxyapatite composite. The study aims to evaluate effect of hydroxyapatite (HA, Ca₁₀(PO₄)₆OH₂), a ceramic similar to natural bone, into AZ31B Mg alloy matrix on biomineralization and biocompatibility.
Date: June 30, 2020
Creator: Ho, Yee-Hsien; Man, Kun; Joshi, Sameehan; Pantawane, Mangesh V.; Wu, Tso-Chang; Yang, Yong et al.
System: The UNT Digital Library