Degree Department

Anion-enhanced excited state charge separation in a spiro-locked N-heterocycle-fused push-pull zinc porphyrin (open access)

Anion-enhanced excited state charge separation in a spiro-locked N-heterocycle-fused push-pull zinc porphyrin

This article presents a new type of push–pull charge transfer complex, viz., a spiro-locked N-heterocycle-fused zinc porphyrin, ZnP-SQ, that is shown to undergo excited state charge separation, which is enhanced by axial F⁻ binding to the Zn center. Spectroelectrochemical studies are used to identify the spectra of charge separated states and charge separation upon photoexcitation of ZnP is established.
Date: February 24, 2021
Creator: Chahal, Mandeep K.; Liyanage, Anudradha; Alsaleh, Ajyal Z.; Karr, P. A.; Hill, Jonathan P. & D'Souza, Francis
System: The UNT Digital Library
Bifunctional activation of methane by bioinspired transition metal complexes. A simple methane protease model (open access)

Bifunctional activation of methane by bioinspired transition metal complexes. A simple methane protease model

Article modeling Metal-based bifunctional methane activators using density functional theory. The research yields insight into possible avenues for bio-inspired methane activators.
Date: February 15, 2021
Creator: Anderson, Mary E.; Marks, Michael B. & Cundari, Thomas R., 1964-
System: The UNT Digital Library
Calculation of the Vapour Pressure of Organic Molecules by Means of a Group-Additivity Method and Their Resultant Gibbs Free Energy and Entropy of Vaporization at 298.15 K (open access)

Calculation of the Vapour Pressure of Organic Molecules by Means of a Group-Additivity Method and Their Resultant Gibbs Free Energy and Entropy of Vaporization at 298.15 K

Article presenting the calculation of the vapour pressure of organic molecules at 298.15 K using a commonly applicable computer algorithm based on the group-additivity method. The standard entropy of vaporization ΔS°vap has been determined and compared with experimental data of 1129 molecules, exhibiting excellent conformance with a correlation coefficient R2 of 0.9598, a standard error σ of 8.14 J/mol/K and a medium absolute deviation of 4.68%.
Date: February 17, 2021
Creator: Naef, Rudolf & Acree, William E. (William Eugene)
System: The UNT Digital Library
Disentangling Orbital and Valley Hall Effects in Bilayers of Transition Metal Dichalcogenides (open access)

Disentangling Orbital and Valley Hall Effects in Bilayers of Transition Metal Dichalcogenides

This article shows that a bilayer of 2H-MoS₂ is an orbital Hall insulator that exhibits a sizeable orbital Hall effect in the absence of both spin and valley Hall effects. The results are based on density functional theory and low-energy effective model calculations and strongly suggest that bilayers of TMDs are highly suitable platforms for direct observation of the orbital Hall insulating phase in two-dimensional materials.
Date: February 5, 2021
Creator: Cysne, Tarik P.; Costa, Marcio; Canonico, Luis M.; Buongiorno Nardelli, Marco; Muniz, R. B. & Rappoport, Tatiana G.
System: The UNT Digital Library
Kinetic fall-off behavior for the Cl + Furan-2,5-dione (C4H2O3, maleic anhydride) reaction (open access)

Kinetic fall-off behavior for the Cl + Furan-2,5-dione (C4H2O3, maleic anhydride) reaction

Article discusses how rate coefficients, k, for the gas-phase Cl + Furan-2,5-dione (C4H2O3, maleic anhydride) reaction were measured over the 15–500 torr (He and N2 bath gas) pressure range at temperatures between 283 and 323 K. An atmospheric degradation mechanism for C4H2O3 is proposed based on the observed product yields and theoretical calculations of ring-opening pathways and activation barrier energies at the CBS-QB3 level of theory. This is the accepted manuscript version of the published article.
Date: February 15, 2021
Creator: Chattopadhyay, Aparajeo; Gierczak, Tomasz; Marshall, Paul; Papadimitriou, Vassileios C. & Burkholder, James B. (James Bart), 1954-
System: The UNT Digital Library