Weak-Light Image Enhancement Method Based on Adaptive Local Gamma Transform and Color Compensation (open access)

Weak-Light Image Enhancement Method Based on Adaptive Local Gamma Transform and Color Compensation

This article proposes a correction method for image enhancement models based on an adaptive local gamma transformation and color compensation inspired by the illumination reflection model. It is demonstrated that the proposed method adaptively reduces the influence of uneven illumination to avoid overenhancement and improves the visual effect of low-light images.
Date: June 25, 2021
Creator: Wang, Wencheng; Yuan, Xiaohui; Chen, Zhenxue; Wu, Xiaojin & Gao, Zairui
System: The UNT Digital Library
Using a microprocessor knee (C-Leg) with appropriate foot transitioned individuals with dysvascular transfemoral amputations to higher performance levels: a longitudinal randomized clinical trial (open access)

Using a microprocessor knee (C-Leg) with appropriate foot transitioned individuals with dysvascular transfemoral amputations to higher performance levels: a longitudinal randomized clinical trial

Article evaluating whether advanced prostheses can provide better safety and performance capabilities to maintain and improve quality of life in individuals who are predominantly designated MFCL level K2. This study used a 13 month longitudinal clinical trial to determine the benefits of using a C-Leg and 1M10 foot in individuals at K2 level with transfemoral amputation due to vascular disease.
Date: May 25, 2021
Creator: Jayaraman, Chandrasekaran; Mummidisetty, Chaithanya K.; Albert, Mark; Lipschutz, Robert; Hoppe-Ludwig, Shenan; Mathur, Gayatri et al.
System: The UNT Digital Library
Harnessing nanofiber alignment and pore size to promote stem cell self-renewal and differentiation (open access)

Harnessing nanofiber alignment and pore size to promote stem cell self-renewal and differentiation

Article describes how stem cell therapy holds immense potential for regenerative medicine, but its applications are limited due to the loss of pluripotency during in vitro expansion. This study reveals that the arrangement of electrospun fibers aligns with the distribution and strength of the electric field through both experimentation and simulation.
Date: July 25, 2023
Creator: Wei, Qiang; Blake, Laurence; Liu, Jiafeng; Man, Kun; Liang, Cindy; Teoh, Alexandra et al.
System: The UNT Digital Library
Exploring Edge Computing in Multi-Person Mixed Reality for Cooperative Perception (open access)

Exploring Edge Computing in Multi-Person Mixed Reality for Cooperative Perception

Article and accompanying poster presenting a prototype for the use of Edge with MR devices to provide cooperative perception capability to the MR device.
Date: June 25, 2020
Creator: Tang, Sihai; Chen, Bruce (Haidi); Hochstetler, Jacob; Hirsch, Jason & Fu, Song
System: The UNT Digital Library
Detection of Parkinson's Disease Through Automated Pupil Tracking of the Post-illumination Pupillary Response (open access)

Detection of Parkinson's Disease Through Automated Pupil Tracking of the Post-illumination Pupillary Response

This article describes a system for pupil size estimation with a user interface to allow rapid adjustment of parameters and extraction of pupil parameters of interest in order to identify Parkinson's disease (PD) as early as possible.
Date: March 25, 2021
Creator: Tabashum, Thasina; Zaffer, Adnaan; Yousefzai, Raman; Colletta, Kalea; Jost, Mary Beth; Park, Youngsook et al.
System: The UNT Digital Library
Carrier photodynamics in 2D perovskites with solution-processed silver and graphene contacts for bendable optoelectronics (open access)

Carrier photodynamics in 2D perovskites with solution-processed silver and graphene contacts for bendable optoelectronics

Article reporting on the inkjet printed, direct contact study of solution-processed, 2D perovskite-based photodetectors (PDs) formed on flexible PI substrates. Silver (Ag) and graphene (Gr) inks have been engineered to serve as efficient electrical contacts for solution-processed two-dimensional (2D) organo-halide (CH3(CH2)3NH3)2(CH3NH3)n−1PbnI3n+1 (n = 4) layered perovskites, where all inkjet-printed heterostructure PDs were fabricated on polyimide (PI) substrates.
Date: March 25, 2021
Creator: Hossain, Ridwan F.; Min, Misook; Ma, Liang-Chieh; Sakri, Shambhavi R. & Kaul, Anupama
System: The UNT Digital Library
Light Confinement in Twisted Single-Layer 2D+ Moiré Photonic Crystals and Bilayer Moiré Photonic Crystals (open access)

Light Confinement in Twisted Single-Layer 2D+ Moiré Photonic Crystals and Bilayer Moiré Photonic Crystals

Article reporting optical properties of twisted single-layer 2D+ moiré photonic crystals where there is a weak modulation in z direction, and bilayer moiré-overlapping-moiré photonic crystals. This study leads to a potential application of 2D+ moiré photonic crystal in future on-chip optoelectronic integration.
Date: December 25, 2023
Creator: Kamau, Steve; Hurley, Noah; Kaul, Anupama; Cui, Jingbiao & Lin, Yuankun
System: The UNT Digital Library
Multifaceted Shape Memory Polymer Technology for Biomedical Application: Combining Self-Softening and Stretchability Properties (open access)

Multifaceted Shape Memory Polymer Technology for Biomedical Application: Combining Self-Softening and Stretchability Properties

Article describes how thiol-ene polymers are a promising class of biomaterials with a wide range of potential applications, including organs-on-a-chip, microfluidics, drug delivery, and wound healing. This study investigated the incorporation of di-acrylate chain extenders to improve the stretchability and conformability of those flexible thiol-ene polymers.
Date: October 25, 2023
Creator: Chitrakar, Chandani; Torres, Marc Anthony; Rocha-Flores, Pedro Emanuel; Hu, Qichan & Ecker, Melanie
System: The UNT Digital Library