Topics in micro electromechanical systems: MEMS engineering and alternative materials for MEMS fabrication.

Access: Use of this item is restricted to the UNT Community
This paper deals with various topics in micro electromechanical systems (MEMS) technology beginning with microactuation, MEMS processing, and MEMS design engineering. The fabrication and testing of three separate MEMS devices are described. The first two devices are a linear stepping motor and a continuous rotary motor, respectively; and were designed for the purpose of investigating the frictional and wear properties of silicon components. The third device is a bi-stable microrelay, in which electrical current conducts through a secondary circuit, via a novel probe-interconnect mechanism. The second half focuses on engineering a carbon nanotube / SU-8 photoepoxy nanocomposite for fabricating MEMS devices. A processing method for this material as well as the initial results of characterization, are discussed.
Date: August 2004
Creator: Chapla, Kevin
System: The UNT Digital Library

Effect of Silyation on Organosilcate Glass Films

Access: Use of this item is restricted to the UNT Community
Photoresist stripping with oxygen plasma ashing destroys the functional groups in organosilicate glass films and induce moisture uptake, causing low-k dielectric degradation. In this study, hexamethyldisilazane (HMDS), triethylchlorosilane and tripropylchlorosilane are used to repair the damage to organosilicate glass by the O2 plasma ashing process. The optimization of the surface functionalization of the organosilicate glass by the silanes and the thermal stability of the functionalized surfaces are investigated. These experimental results show that HMDS is a promising technique to repair the damage to OSG during the photoresist removal processing and that the heat treatment of the functionalized surfaces causes degradation of the silanes deteriorating the hydrophobicity of the films.
Date: August 2004
Creator: Kadam, Poonam
System: The UNT Digital Library

A Wet Etch Release Method for Silicon Microelectromechanical Systems (MEMS) Using Polystyrene Microspheres for Improved Yield

Access: Use of this item is restricted to the UNT Community
One of the final steps in fabricating microelectromechanical devices often involves a liquid etch release process. Capillary forces during the liquid evaporation stage after the wet etch process can pull two surfaces together resulting in adhesion of suspended microstructures to the supporting substrate. This release related adhesion can greatly reduce yields. In this report, a wet etch release method that uses polystyrene microspheres in the final rinse liquid is investigated. The polystyrene microspheres act as physical barriers between the substrate and suspended microstructures during the final liquid evaporation phase. A plasma ashing process is utilized to completely remove the polystyrene microspheres from the microstructure surfaces. Using this process, release yields > 90% were achieved. It is found that the surface roughness of gold surfaces increases while that of the silicon is reduced due to a thin oxide that grows on the silicon surface during the plasma process.
Date: May 2004
Creator: Mantiziba, Fadziso
System: The UNT Digital Library
Polymer Liquid Crystal (PLC) and Polypropylene Interlayers in Polypropylene and Glass Fiber Composites: Mechanical Properties (open access)

Polymer Liquid Crystal (PLC) and Polypropylene Interlayers in Polypropylene and Glass Fiber Composites: Mechanical Properties

In recent developments of composite materials, scientists and engineers have come up with fibers as well as matrices for composites and techniques of blending high cost components with low cost materials. Thus, one creates cost effective composite materials that are as efficient as space age components. One of the major breakthroughs in this area is the innovation of molecular composites, specifically polymeric liquid crystals (PLCs). These materials have excellent mechanical properties such as tensile impact and bending strength. They have excellent chemical resistance, low thermal expansivity, and low flammability. Their low viscosity leads to good processability One major setback in using space age composite technology in commercial applications is the price. Due to the complexity of processing, the cost of space composite materials is skyrocketing. To take the same concept of space age composite materials to create a more economical substitute has become a serious concern among scientists and engineers around the world. The two issues that will be resolved in this thesis are: (1) the potential impact of using PLCs (molecular reinforcement) can have on macro reinforced (heterogeneous composite, HC) long fiber systems; and (2) how strategic placement of the reinforcing layers can affect the macromechanical properties of the …
Date: December 2000
Creator: Maswood, Syed
System: The UNT Digital Library
Deposition and Characterization of Pentacene Film. (open access)

Deposition and Characterization of Pentacene Film.

Many organic materials have been studied to be used as semiconductors, few of them being pentacene and polythiophene. Organic semiconductors have been investigated to make organic thin film transistors. Pentacene has been used in the active region of the transistors. Transistors fabricated with pentacene do not have very high mobility. But in some applications, high mobility is not needed. In such application other properties of organic transistors are used, such as, ease of production and flexibility. Organic thin film transistors (OTFT) can find use as low density storage devices, such as smart cards or I.D. tags, and displays. OTFT are compatible with polymeric substrates and hence can find use as flexible computer screens. This project aims at making 'smart clothes', the cheap way, with pentacene based OTFT. This problem in lieu of thesis describes a way to deposit pentacene films and characterize it. Pentacene films were deposited on substrates and characterized using x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The substrate used was ~1500Å platinum on silicon wafer or bare silicon wafer. was used. A deposition system for vacuum deposition of pentacene was assembled. The XRD data for deposited pentacene films shows the presence of two phases, single …
Date: December 2003
Creator: Singh, Nidhi
System: The UNT Digital Library