NREL's FY09 CSP Resource Assessment Plans: Solar Resource Assessment Workshop (open access)

NREL's FY09 CSP Resource Assessment Plans: Solar Resource Assessment Workshop

Solar Resource Assessment Workshop, Denver CO, Oct 29, 2008 presentation: NREL's FY09 CSP Resource Assessment Plans
Date: October 29, 2008
Creator: Renne, D.
Object Type: Article
System: The UNT Digital Library
Advanced Simulation and Computing FY08-09 Implementation Plan Volume 2 Revision 0 (open access)

Advanced Simulation and Computing FY08-09 Implementation Plan Volume 2 Revision 0

The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the safety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future nonnuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear-weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable Stockpile Life Extension Programs (SLEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on …
Date: April 25, 2007
Creator: McCoy, M; Kusnezov, D; Bikkel, T & Hopson, J
Object Type: Report
System: The UNT Digital Library
LWRSP FY09 testing and analysis of reactor metal degradation (open access)

LWRSP FY09 testing and analysis of reactor metal degradation

Current regulations require RPV steels to maintain conservative margins of fracture toughness so that postulated flaws do not threaten the integrity of the RPV during either normal operation and maintenance cycles or under accident transients, like pressurized thermal shock. Neutron irradiation degrades fracture toughness, in some cases severely. Thermal aging, while not generally considered a significant issue for a 40-y operating life, must be an additional consideration for operation to 60 or 80 years. Regulations, codified in the ASME Boiler and Pressure Vessel Code, Regulatory Guide 1.99 Rev 2, etc., recognize that embrittlement has a potential for reducing toughness below acceptable levels. The last few decades have seen remarkable progress in developing a mechanistic understanding of irradiation embrittlement. This understanding has been exploited in formulating robust, physically-based and statistically-calibrated models of CVN-indexed transition-temperature shifts (TTS). These semi-empirical models account for key embrittlement variables and variable interactions, including the effects of copper (Cu), nickel (Ni), phosphorous (P), fluence ({phi}t), flux ({phi}), and irradiation temperature (T{sub i}). However, these models and our present understanding of radiation damage are not fully quantitative, and do not treat all potentially significant variables and issues. Over the past three decades, developments in fracture mechanics have led …
Date: September 1, 2009
Creator: Busby, Jeremy T; Nanstad, Randy K; Odette, G. & Was, Gary
Object Type: Report
System: The UNT Digital Library
FY09 recycling opportunity assessment for Sandia National Laboratories/New Mexico. (open access)

FY09 recycling opportunity assessment for Sandia National Laboratories/New Mexico.

This Recycling Opportunity Assessment (ROA) is a revision and expansion of the FY04 ROA. The original 16 materials are updated through FY08, and then 56 material streams are examined through FY09 with action items for ongoing improvement listed for most. In addition to expanding the list of solid waste materials examined, two new sections have been added to cover hazardous waste materials. Appendices include energy equivalencies of materials recycled, trends and recycle data, and summary tables of high, medium, and low priority action items.
Date: July 1, 2010
Creator: McCord, Samuel Adam
Object Type: Report
System: The UNT Digital Library
Idaho National Laboratory’s FY09 & FY10 Greenhouse Gas Report (open access)

Idaho National Laboratory’s FY09 & FY10 Greenhouse Gas Report

A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2009 and 2010 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. In recent years, concern has grown about the environmental impact of GHGs. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of an inventory of the total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions. INL's GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, …
Date: June 1, 2011
Creator: Morton, Jennifer D.
Object Type: Report
System: The UNT Digital Library
Particle Physics at the University of Pittsburgh Summary Report for Proposal Period FY'09-11 (open access)

Particle Physics at the University of Pittsburgh Summary Report for Proposal Period FY'09-11

Presented is the final summary report for grant DOE-FG02-91ER40646. The HEP group at the University consists of three tasks: B,D and L. Task B supports Pitt's CDF group at the energy frontier which includes Joe Boudreau and Paul Shepard. Work of the group includes Hao Song's thesis on the measurement of the B_c lifetime using exclusive J/psi+pion decays, and an update of the previous B_c semi-leptonic analyses under the supervision of Paul Shepard. Task D supports Pitt's neutrino group at the intensity frontier which includes PIs Dytman, Naples and Paolone. The group also includes postdoctoral research associate Danko, and thesis students Isvan (MINOS), Eberly (Minerva ), Ren (Minerva )and Hansen (T2K). This report summarizes their progress on ongoing experiments which are designed to make significant contributions to a detailed understanding of the neutrino mixing matrix. Task L supports Pitt's ATLAS group at the energy frontier and includes investigators Vladimir Savinov, James Mueller and Joe Boudreau. This group contributed both to hardware (calorimeter electronics, Savinov) and to software (Simulation, Detector Description, and Visualization: Boudreau and Mueller; MC generators: Savinov) and a summary of their progress is presented.
Date: October 1, 2012
Creator: Boudreau, Joe; Dytman, Steven; Mueller, James; Naples, Donna; Paolone, Vittorio & Savinov, Vladimir
Object Type: Report
System: The UNT Digital Library
FY09 PROGRESS: MULTI-ISOTOPE PROCESS (MIP) MONITOR (open access)

FY09 PROGRESS: MULTI-ISOTOPE PROCESS (MIP) MONITOR

Model and experimental estimates of the Multi-Isotope Process Monitor performance for determining burnup after dissolution and acid concentration during solvent extraction steps during reprocessing of spent nuclear fuel are presented.
Date: October 18, 2009
Creator: Schwantes, Jon M.; Orton, Christopher R.; Fraga, Carlos G.; Christensen, Richard; Laspe, Amy R. & Ward, Rebecca M.
Object Type: Report
System: The UNT Digital Library
Fiscal Year 2009 Phased Construction Completion Report for EU Z2-36 in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee (open access)

Fiscal Year 2009 Phased Construction Completion Report for EU Z2-36 in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee

None
Date: March 11, 2009
Creator: Bechtel Jacobs
Object Type: Report
System: The UNT Digital Library
300 Area D4 Project Fiscal Year 2009 Building Completion Report (open access)

300 Area D4 Project Fiscal Year 2009 Building Completion Report

This report summarizes the deactivation, decontamination, decommissioning, and demolition activities of seven facilities in the 300 Area of the Hanford Site in fiscal year 2009. The D4 of these facilities included characterization; engineering; removal of hazardous and radiologically contaminated materials; equipment removal; utility disconnection; deactivation, decontamination, demolition of the structure; and stabilization or removal of slabs and foundations. This report also summarizes the nine below-grade slabs/foundations removed in FY09 of buildings demolished in previous fiscal years.
Date: January 27, 2010
Creator: Skwarek, B. J.
Object Type: Report
System: The UNT Digital Library
FY09 assessment of mercury reduction at SNL/NM. (open access)

FY09 assessment of mercury reduction at SNL/NM.

This assessment takes the result of the FY08 performance target baseline of mercury at Sandia National Laboratories/New Mexico, and records the steps taken in FY09 to collect additional data, encourage the voluntary reduction of mercury, and measure success. Elemental (metallic) mercury and all of its compounds are toxic, and exposure to excessive levels can permanently damage or fatally injure the brain and kidneys. Elemental mercury can also be absorbed through the skin and cause allergic reactions. Ingestion of inorganic mercury compounds can cause severe renal and gastrointestinal damage. Organic compounds of mercury such as methyl mercury, created when elemental mercury enters the environment, are considered the most toxic forms of the element. Exposures to very small amounts of these compounds can result in devastating neurological damage and death.1 SNL/NM is required to report annually on the site wide inventory of mercury for the Environmental Protection Agency's (EPA) Toxics Release Inventory (TRI) Program, as the site's inventory is excess of the ten pound reportable threshold quantity. In the fiscal year 2008 (FY08) Pollution Prevention Program Plan, Section 5.3 Reduction of Environmental Releases, a performance target stated was to establish a baseline of mercury, its principle uses, and annual quantity or inventory. …
Date: February 1, 2010
Creator: McCord, Samuel Adam
Object Type: Report
System: The UNT Digital Library
Fiscal Year 2009 Phased Construction Completion Report for EU Z2-36 in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee (open access)

Fiscal Year 2009 Phased Construction Completion Report for EU Z2-36 in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee

The purpose of this Phased Construction Completion Report (PCCR) is to present fiscal year (FY) 2009 results of Dynamic Verification Strategy (DVS) characterization activities for exposure unit (EU) Z2-36 in Zone 2 at the East Tennessee technology Park (ETTP). The ETTP is located in the northwest corner of the US Department of Energy (DOE) Oak Ridge Reservation in Oak Ridge, Tennessee and encompasses approximately 5000 acres that have been subdivided into three zones--Zone 1 ({approx} 1400 acres), Zone 2 ({approx} 800 acres), and the Boundary Area ({approx} 2800 acres). Zone 2 comprises the highly industrial portion of ETTP and consists of all formerly secured areas of the facility, including the large processing buildings and direct support facilities; experimental laboratories and chemical and materials handling facilities; materials storage and waste disposal facilities; secure document records libraries; and shipping and receiving warehouses. The Record of Decision for Soil, Buried Waste, and Subsurface Structure Actions in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2005) (Zone 2 ROD) specifies the future end use for Zone 2 acreage as uncontrolled industrial for the upper 10 ft of soils. Characterization activities in these areas were conducted in compliance with the Zone 2 ROD …
Date: February 10, 2009
Creator: Bechtel Jacobs
Object Type: Report
System: The UNT Digital Library
FY-09 Summary Report to the Office of Petroleum Reserves on the Western Energy Corridor Initiative Activities and Accomplishments (open access)

FY-09 Summary Report to the Office of Petroleum Reserves on the Western Energy Corridor Initiative Activities and Accomplishments

To meet its programmatic obligations under the Energy Policy Act of 2005, the Office of Naval Petroleum and Shale Oil Reserves (NPSOR) has initiated the Western Energy Corridor Initiative (WECI). The WECI will implement the Unconventional Strategic Fuels Task Force recommendations for accelerating and promoting the development of domestic unconventional fuels to help meet the nations’ energy needs. The mission of the WECI is to bolster America’s future fuel security by facilitating socially and environmentally responsible development of unconventional fuels resources in the Western Energy Corridor, using sound engineering principles and science-based methods to define and assess benefits, impacts, uncertainties, and mitigation options and to resolve impediments. The Task Force proposed a three-year program in its commercialization plan. The work described herein represents work performed by Idaho National Laboratory (INL) in support of the DOE’s WECI. This effort represents an interim phase of work, designed to initiate only select portions of the initiative, limited by available funding resources within NPOSR. Specifically, the work presented here addresses what was accomplished in FY-09 with the remaining carryover (~$420K) from NPOSR FY-08 funds. It was the intent of the NPOSR program to seek additional funding for full implementation of the full scope of …
Date: January 1, 2010
Creator: Wood, Thomas R.
Object Type: Report
System: The UNT Digital Library
Results of the FY09 Enhanced DOE High Level Waste Melter Throughput Studies at SRNL (open access)

Results of the FY09 Enhanced DOE High Level Waste Melter Throughput Studies at SRNL

High-level waste (HLW) throughput (i.e., the amount of waste processed per unit time) is a function of two critical parameters: waste loading (WL) and melt rate. For the Waste Treatment and Immobilization Plant (WTP) at the Hanford Site and the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), increasing HLW throughput would significantly reduce the overall mission life cycle costs for the Department of Energy (DOE). The objective of this task is to develop data, assess property models, and refine or develop the necessary models to support increased WL of HLW at SRS. It is a continuation of the studies initiated in FY07, but is under the specific guidance of a Task Change Request (TCR)/Work Authorization received from DOE headquarters (Project Number RV071301). Using the data generated in FY07, FY08 and historical data, two test matrices (60 glasses total) were developed at the Savannah River National Laboratory (SRNL) in order to generate data in broader compositional regions. These glasses were fabricated and characterized using chemical composition analysis, X-ray Diffraction (XRD), viscosity, liquidus temperature (TL) measurement and durability as defined by the Product Consistency Test (PCT). The results of this study are summarized below: (1) In general, the …
Date: June 23, 2010
Creator: Johnson, F. & Edwards, T.
Object Type: Report
System: The UNT Digital Library
Calibration of an interfacial force microscope for MEMS metrology : FY08-09 activities. (open access)

Calibration of an interfacial force microscope for MEMS metrology : FY08-09 activities.

Progress in MEMS fabrication has enabled a wide variety of force and displacement sensing devices to be constructed. One device under intense development at Sandia is a passive shock switch, described elsewhere (Mitchell 2008). A goal of all MEMS devices, including the shock switch, is to achieve a high degree of reliability. This, in turn, requires systematic methods for validating device performance during each iteration of design. Once a design is finalized, suitable tools are needed to provide quality assurance for manufactured devices. To ensure device performance, measurements on these devices must be traceable to NIST standards. In addition, accurate metrology of MEMS components is needed to validate mechanical models that are used to design devices to accelerate development and meet emerging needs. Progress towards a NIST-traceable calibration method is described for a next-generation, 2D Interfacial Force Microscope (IFM) for applications in MEMS metrology and qualification. Discussed are the results of screening several suitable calibration methods and the known sources of uncertainty in each method.
Date: October 1, 2009
Creator: Houston, Jack E.; Baker, Michael Sean; Crowson, Douglas A.; Mitchell, John Anthony & Moore, Nathan W.
Object Type: Report
System: The UNT Digital Library
Annual Report on Waste Generation and Pollution Prevention Progress: 2009 (open access)

Annual Report on Waste Generation and Pollution Prevention Progress: 2009

This report is a waste generation data report for year 2009.
Date: November 30, 2009
Creator: Jackson, J. G.
Object Type: Report
System: The UNT Digital Library