Comment on "Wall Forces Produced During ITER Disruptions" by H. R. Strauss, R. Paccagnella, and J. Breslau (PHYSICS OF PLASMAS 17, 082505 (2010) (open access)

Comment on "Wall Forces Produced During ITER Disruptions" by H. R. Strauss, R. Paccagnella, and J. Breslau (PHYSICS OF PLASMAS 17, 082505 (2010)

The paper by H.R. Strauss presents numerical simulations, which pretend to describe the disruption instability in ITER device. The simulations were performed with numerical code M3D, described in Ref.[7] of the paper.
Date: October 20, 2010
Creator: Zakharov, Leonid E.
Object Type: Report
System: The UNT Digital Library
OFFICE OF TECHNOLOGY INNOVATION AND DEVELOPMENT TECHNOLOGY DEVELOPMENT REPORT FY2011 (open access)

OFFICE OF TECHNOLOGY INNOVATION AND DEVELOPMENT TECHNOLOGY DEVELOPMENT REPORT FY2011

None
Date: October 20, 2011
Creator: Bush, S. & Douglas, B.
Object Type: Report
System: The UNT Digital Library
TOXNET and Beyond: Using the National Library of Medicine's Environmental Health and Toxicology Portal (open access)

TOXNET and Beyond: Using the National Library of Medicine's Environmental Health and Toxicology Portal

The National Library of Medicine's Environmental Health and Toxicology Portal provides access to numerous databases that can help you explore environmental chemicals and risks. TOXNET and Beyond: Using NLM's Environmental Health and Toxicology Portal conveys the fundamentals of searching the NLM's TOXNET system of databases in chemistry, toxicology, environmental health, and related fields. In addition to TOXNET, the course will highlight various resources available through the Environmental Health and Toxicology Portal.
Date: October 20, 2010
Creator: Templin-Branner, W.
Object Type: Book
System: The UNT Digital Library
Aerosol Mass Spectrometry via Laser-Induced Incandescence Particle Vaporization Final Report (open access)

Aerosol Mass Spectrometry via Laser-Induced Incandescence Particle Vaporization Final Report

We have successfully developed and commercialized a soot particle aerosol mass spectrometer (SP-AMS) instrument to measure mass, size, and chemical information of soot particles in ambient environments. The SP-AMS instrument has been calibrated and extensively tested in the laboratory and during initial field studies. The first instrument paper describing the SP-AMS has been submitted for publication in a peer reviewed journal and there are several related papers covering initial field studies and laboratory studies that are in preparation. We have currently sold 5 SP-AMS instruments (either as complete systems or as SP modules to existing AMS instrument operators).
Date: October 20, 2011
Creator: Onasch, Timothy B.
Object Type: Report
System: The UNT Digital Library
Comment on "Wall Forces Produced During ITER Disruptions" by H. R. Strauss, R. Paccagnella, and J. Breslau (PHYSICS OF PLASMAS 17, 082505 (2010) (open access)

Comment on "Wall Forces Produced During ITER Disruptions" by H. R. Strauss, R. Paccagnella, and J. Breslau (PHYSICS OF PLASMAS 17, 082505 (2010)

The paper by H.R. Strauss presents numerical simulations, which pretend to describe the disruption instability in ITER device. The simulations were performed with numerical code M3D, described in Ref.[7] of the paper.
Date: October 20, 2010
Creator: Zakharov, Leonid E.
Object Type: Report
System: The UNT Digital Library
The Northwest Geysers EGS Demonstration Project Phase 1: Pre-stimulation coupled geomechanical modeling to guide stimulation and monitoring plans (open access)

The Northwest Geysers EGS Demonstration Project Phase 1: Pre-stimulation coupled geomechanical modeling to guide stimulation and monitoring plans

This paper presents activities and results associated with Phase 1 (pre-stimulation phase) of an Enhanced Geothermal System (EGS) demonstration project at the northwest part of The Geysers geothermal field, California. The paper presents development of a 3-D geological model, coupled thermal-hydraulic-mechanical (THM) modeling of proposed stimulation injection as well as current plans for stimulation and monitoring of the site. The project aims at creating an EGS by directly and systematically injecting cool water at relatively low pressure into a known High Temperature (about 280 to 350 C) Zone (HTZ) located under the conventional (240 C) steam reservoir at depths of {approx}3 km. Accurate micro-earthquake monitoring initiated before the start of the injection will be used as a tool for tracking the development of the EGS and monitoring changes in microseismicity. We first analyzed historic injection and micro-earthquake data from an injection well (Aidlin 11) located about 3 miles to the west of the new EGS demonstration area. Thereafter, we used the same modeling approach to predict the likely extent of the zone of enhanced permeability for a proposed initial injection in two wells (Prati State 31 and Prati 32) at the new EGS demonstration area. Our modeling indicates that the …
Date: October 20, 2010
Creator: Rutqvist, J.; Dobson, P. F.; Oldenburg, C. M.; Garcia, J. & Walters, M.
Object Type: Article
System: The UNT Digital Library
NEAR FIELD MODELING OF SPE1 EXPERIMENT AND PREDICTION OF THE SECOND SOURCE PHYSICS EXPERIMENTS (SPE2) (open access)

NEAR FIELD MODELING OF SPE1 EXPERIMENT AND PREDICTION OF THE SECOND SOURCE PHYSICS EXPERIMENTS (SPE2)

Motion along joints and fractures in the rock has been proposed as one of the sources of near-source shear wave generation, and demonstrating the validity of this hypothesis is a focal scientific objective of the source physics experimental campaign in the Climax Stock granitic outcrop. A modeling effort has been undertaken by LLNL to complement the experimental campaign, and over the long term provide a validated computation capability for the nuclear explosion monitoring community. The approach involves performing the near-field nonlinear modeling with hydrodynamic codes (e.g., GEODYN, GEODYN-L), and the far-field seismic propagation with an elastic wave propagation code (e.g., WPP). the codes will be coupled together to provide a comprehensive source-to-sensor modeling capability. The technical approach involves pre-test predictions of each of the SPE experiments using their state of the art modeling capabilities, followed by code improvements to alleviate deficiencies identified in the pre-test predictions. This spiral development cycle wherein simulations are used to guide experimental design and the data from the experiment used to improve the models is the most effective approach to enable a transition from the descriptive phenomenological models in current use to the predictive, hybrid physics models needed for a science-based modeling capability for nuclear …
Date: October 20, 2011
Creator: Antoun, T; Xu, H; Vorobiev, O & Lomov, I
Object Type: Report
System: The UNT Digital Library
Status of the ILC Crab Cavity Development (open access)

Status of the ILC Crab Cavity Development

The International Linear Collider (ILC) will require two dipole cavities to 'crab' the electron and positron bunches prior to their collision. It is proposed to use two 9 cell SCRF dipole cavities operating at a frequency of 3.9 GHz, with a transverse gradient of 3.8MV/m in order to provide the required transverse kick. Extensive numerical modelling of this cavity and its couplers has been performed. Aluminium prototypes have been manufactured and tested to measure the RF properties of the cavity and couplers. In addition single cell niobium prototypes have been manufactured and tested in a vertical cryostat. The International Collider (ILC) [1] collides bunches of electrons and positrons at a crossing angle of 14 mrad. The angle between these bunches causes a loss in luminosity due to geometric effects [2]. The luminosity lost from this geometric effect can be recovered by rotating the bunches into alignment prior to collision. One possible method of rotating the bunches is to use a crab cavity [3]. A crab cavity is a transverse defecting cavity, where the phase of the cavity is such that the head and tail of the bunch receive equal and opposite kicks. As the bunches are only 500 nm wide …
Date: October 20, 2011
Creator: Burt, G.; Dexter, A.; Beard, C.; Goudket, P.; McIntosh, P.; Bellantoni, L. et al.
Object Type: Article
System: The UNT Digital Library
THE CHEMICAL AND RADIATION RESISTANCE OF POLYPHENYLENE SULFIDE AS ENCOUNTERED IN THE NUCLEAR WASTE CLEANING PROCESSES (open access)

THE CHEMICAL AND RADIATION RESISTANCE OF POLYPHENYLENE SULFIDE AS ENCOUNTERED IN THE NUCLEAR WASTE CLEANING PROCESSES

Polyphenylene sulfide (PPS) is extremely resistant to gamma irradiation, caustic solution, and dilute nitric acid. PPS is the material of construction for the coalescers used in the Modular Caustic-Side Solvent Extraction Unit (MCU). After applying the equivalent of 16 years of gamma irradiation and several months of exposures to caustic solution, no dimensional changes nor chemical changes were detected in PPS whether the PPS was in fiber form or in a composite with E-glass fibers. However, PPS acts as a media for heterogeneous nucleation. In particular, PPS appears to favor aluminosilicate formation in saturated solutions of aluminum and silicon in caustic environments. Parallel testing, in progress, is examining the stability of PPS when exposed to the new solvent formulation under development for MCU. Preliminary data, after two months of exposure, PPS is remarkably stable to the new solvent.
Date: October 20, 2011
Creator: Fondeur, F.
Object Type: Article
System: The UNT Digital Library
ANALYSIS OF THE LEACHING EFFICIENCY OF INHIBITED WATER AND TANK SIMULANT IN REMOVING RESIDUES ON THERMOWELL PIPES (open access)

ANALYSIS OF THE LEACHING EFFICIENCY OF INHIBITED WATER AND TANK SIMULANT IN REMOVING RESIDUES ON THERMOWELL PIPES

A key component for the accelerated implementation and operation of the Salt Waste Processing Facility (SWPF) is the recovery of Tank 48H. Tank 48H is a type IIIA tank with a maximum capacity of 1.3 million gallons. Video inspection of the tank showed that a film of solid material adhered to the tank internal walls and structures between 69 inch and 150 inch levels. From the video inspection, the solid film thickness was estimated to be 1mm, which corresponds to {approx}33 kg of TPB salts (as 20 wt% insoluble solids) (1). This film material is expected to be easily removed by single-rinse, slurry pump operation during Tank 48H TPB disposition via aggregation processing. A similar success was achieved for Tank 49H TPB dispositioning, with slurry pumps operating almost continuously for approximately 6 months, after which time the tank was inspected and the film was found to be removed. The major components of the Tank 49H film were soluble solids - Na{sub 3}H(CO{sub 3}){sub 2} (Hydrated Sodium Carbonate, aka: Trona), Al(OH){sub 3} (Aluminum Hydroxide, aka: Gibbsite), NaTPB (Sodium Tetraphenylborate), NaNO{sub 3} (Sodium Nitrate) and NaNO{sub 2} (Sodium Nitrite) (2). Although the Tank 48H film is expected to be primarily soluble solids, …
Date: October 20, 2011
Creator: Fondeur, F.; White, T.; Oji, L.; Martino, C. & Wilmarth, B.
Object Type: Article
System: The UNT Digital Library
REVIEW OF ACTINIDE AND STRONTIUM LOADING DATA FOR MST AND MMST (open access)

REVIEW OF ACTINIDE AND STRONTIUM LOADING DATA FOR MST AND MMST

SRNL reviewed the relevant data from MST and mMST fissile loading studies to determine if further studies were required. With respect to MST, SRNL found that the published results adequately bound the expected conditions that Small Column Ion Exchange (SCIX) process will operate under. The lack of strontium data does not represent an issue as strontium is not relevant to criticality. There is no threat to criticality safety from the lack of strontium loading data. However, SRNL proposes a single test with MST to ensure that future SCIX operations are conservatively bounded and strontium maximum loading is understood. With respect to attempts to maximally load mMST, SRNL's knowledge on actinide and strontium loading is limited to uranium behavior. mMST has a very weak affinity for uranium, and even extended contact time at high uranium concentration shows minimal loading onto mMST. This leaves questions about the ability to load plutonium, neptunium and strontium. SRNL proposes to perform two tests with mMST to ensure that questions on plutonium, neptunium, and strontium sorption are answered, as well as ensuring that future mMST operations are conservatively bounded.
Date: October 20, 2010
Creator: Peters, T.; Hobbs, D. & Fink, S.
Object Type: Report
System: The UNT Digital Library
Genome-wide analysis of promoter architecture in Drosophila melanogaster (open access)

Genome-wide analysis of promoter architecture in Drosophila melanogaster

Core promoters are critical regions for gene regulation in higher eukaryotes. However, the boundaries of promoter regions, the relative rates of initiation at the transcription start sites (TSSs) distributed within them, and the functional significance of promoter architecture remain poorly understood. We produced a high-resolution map of promoters active in the Drosophila melanogaster embryo by integrating data from three independent and complementary methods: 21 million cap analysis of gene expression (CAGE) tags, 1.2 million RNA ligase mediated rapid amplification of cDNA ends (RLMRACE) reads, and 50,000 cap-trapped expressed sequence tags (ESTs). We defined 12,454 promoters of 8037 genes. Our analysis indicates that, due to non-promoter-associated RNA background signal, previous studies have likely overestimated the number of promoter-associated CAGE clusters by fivefold. We show that TSS distributions form a complex continuum of shapes, and that promoters active in the embryo and adult have highly similar shapes in 95% of cases. This suggests that these distributions are generally determined by static elements such as local DNA sequence and are not modulated by dynamic signals such as histone modifications. Transcription factor binding motifs are differentially enriched as a function of promoter shape, and peaked promoter shape is correlated with both temporal and spatial …
Date: October 20, 2010
Creator: Hoskins, Roger A.; Landolin, Jane M.; Brown, James B.; Sandler, Jeremy E.; Takahashi, Hazuki; Lassmann, Timo et al.
Object Type: Article
System: The UNT Digital Library
Final Report for "Extending BOUT++ for Solution of Edge Plasma Equations for Use in Whole Device Simulation of Tokamaks" (open access)

Final Report for "Extending BOUT++ for Solution of Edge Plasma Equations for Use in Whole Device Simulation of Tokamaks"

In this Phase I project we have extended the BOUT++ code to solve edge fluid equations. We added a simple neutral fluid model, created a mesh generator as well as collected a set of difficult test problems for benchmarking edge codes. The work in this project should be useful as a starting point to build a complete set of edge fluid equations in BOUT++ that would enhance its ability to not only perform edge turbulence calculations, but also allow the coupled transport-turbulence equations evolved in an efficient manner.
Date: October 20, 2011
Creator: Hakim, Ammar H
Object Type: Report
System: The UNT Digital Library
RIKEN/RBRC Workshop: future Directions in High Energy QCD (open access)

RIKEN/RBRC Workshop: future Directions in High Energy QCD

None
Date: October 20, 2011
Creator: A., Baltz
Object Type: Report
System: The UNT Digital Library
Study of an HHG-Seeded Free-Electron Laser for the LBNL Next Generation Light Source (open access)

Study of an HHG-Seeded Free-Electron Laser for the LBNL Next Generation Light Source

The Next Generation Light Source (NGLS) is a high repetition rate free-electron laser facility proposed by Lawrence Berkeley National Laboratory (LBNL). The proposed facility will provide multiple FEL lines with varying spectral characteristics to satisfy a broad soft X-ray physics programme. At this stage of the project a number of FEL technologies and concepts are being investigated for possible implementation on the facility. In this report we consider a free-electron laser seeded by a Higher Harmonic Generation (HHG) source in which a high power (and consequently relatively low repetition rate) laser pulse is injected into a chamber of inert gas. Through a process of ionisation and recombination coherent higher harmonics of the laser are emitted from the gas and can be injected into an FEL system as a seed field. Further harmonic upconversion can be done within the FEL system to enable temporally coherent FEL output at wavelengths much shorter than, and pulse energies orders of magnitude higher than, the HHG source emission. The harmonic conversion within the FEL works in the following way. The seed field induces an energy modulation within the electron bunch at the start of the modulator. This energy modulation grows within the modulator due to …
Date: October 20, 2010
Creator: Thompson, Neil
Object Type: Report
System: The UNT Digital Library
THE EFFECT OF CO ON HYDROGEN PERMEATION THROUGH PD AND INTERNALLY OXIDIZED AND UN-OXIDIZED PD ALLOY MEMBRANES (open access)

THE EFFECT OF CO ON HYDROGEN PERMEATION THROUGH PD AND INTERNALLY OXIDIZED AND UN-OXIDIZED PD ALLOY MEMBRANES

The H permeation of internally oxidized Pd alloy membranes such as Pd-Al and Pd-Fe, but not Pd-Y alloys, is shown to be more resistant to inhibition by CO(g) as compared to Pd or un-oxidized Pd alloy membranes. The increased resistance to CO is found to be greater at 423 K than at 473 K or 523 K. In these experiments CO was pre-adsorbed onto the membranes and then CO-free H{sub 2} was introduced to initiate the H permeation.
Date: October 20, 2010
Creator: Shanahan, K.; Flanagan, T. & Wang, D.
Object Type: Article
System: The UNT Digital Library
Development of an Integrated Distribution Management System (open access)

Development of an Integrated Distribution Management System

This final report details the components, functionality, costs, schedule and benefits of developing an Integrated Distribution Management System (IDMS) for power distribution system operation. The Distribution Automation (DA) and Supervisory Control and Data Acquisition (SCADA) systems used by electric power companies to manage the distribution of electric power to retail energy consumers are vital components of the Nation’s critical infrastructure. Providing electricity is an essential public service and a disruption in that service, if not quickly restored, could threaten the public safety and the Nation’s economic security. Our Nation’s economic prosperity and quality of life have long depended on the essential services that utilities provide; therefore, it is necessary to ensure that electric utilities are able to conduct their operations safely and efficiently. A fully integrated technology of applications is needed to link various remote sensing, communications and control devices with other information tools that help guide Power Distribution Operations personnel. A fully implemented IDMS will provide this, a seamlessly integrated set of applications to raise electric system operating intelligence. IDMS will enhance DA and SCADA through integration of applications such as Geographic Information Systems, Outage Management Systems, Switching Management and Analysis, Operator Training Simulator, and other Advanced Applications, including …
Date: October 20, 2010
Creator: Schatz, Joe E.
Object Type: Report
System: The UNT Digital Library
Simulations of Alpha Wall Load in ITER. Final report (open access)

Simulations of Alpha Wall Load in ITER. Final report

The partially DOE funded International Thermonuclear Experimental Reactor (ITER) will produce massive amounts of energetic charged alpha particles, which are imperfectly confined by a strong magnetic field. The wall of the experiment is designed to withstand an estimated wall load from these fusion alpha particles, but the accuracy of this estimate needs to be improved to avoid potentially catastrophic surprises when the experiment becomes operational. We have added a more accurate, gyro-dynamic model of particle motion to the existing drift-dynamic model in the DELTA5D simulation software used for the project. We have also added the ability to load a detailed engineering model of the wall and use it in the simulations.
Date: October 20, 2010
Creator: Carlsson, Johan
Object Type: Report
System: The UNT Digital Library
DWPF DECON FRIT: SUMP AND SLURRY SOLIDS ANALYSIS (open access)

DWPF DECON FRIT: SUMP AND SLURRY SOLIDS ANALYSIS

The Savannah River National Laboratory (SRNL) has been requested to perform analyses on samples of the Defense Waste Processing Facility (DWPF) decon frit slurry (i.e., supernate samples and sump solid samples). Four 1-L liquid slurry samples were provided to SRNL by Savannah River Remediation (SRR) from the 'front-end' decon activities. Additionally, two 1-L sump solids samples were provided to SRNL for compositional and physical analysis. In this report, the physical and chemical characterization results of the slurry solids and sump solids are reported. Crawford et al. (2010) provide the results of the supernate analysis. The results of the sump solids are reported on a mass basis given the samples were essentially dry upon receipt. The results of the slurry solids were converted to a volume basis given approximately 2.4 grams of slurry solids were obtained from the {approx}4 liters of liquid slurry sample. Although there were slight differences in the analytical results between the sump solids and slurry solids the following general summary statements can be made. Slight differences in the results are also captured for specific analysis. (1) Physical characterization - (a) SEM/EDS analysis suggested that the samples were enriched in Li and Si (B and Na not detectable …
Date: October 20, 2010
Creator: Crawford, C.; Peeler, D. & Click, D.
Object Type: Report
System: The UNT Digital Library
Hot electron dynamics in graphene (open access)

Hot electron dynamics in graphene

Graphene, a two-dimensional (2D) honeycomb structure allotrope of carbon atoms, has a long history since the invention of the pencil [Petroski (1989)] and the linear dispersion band structure proposed by Wallace [Wal]; however, only after Novoselov et al. successively isolated graphene from graphite [Novoselov et al. (2004)], it has been studied intensively during the recent years. It draws so much attentions not only because of its potential application in future electronic devices but also because of its fundamental properties: its quasiparticles are governed by the two-dimensional Dirac equation, and exhibit a variety of phenomena such as the anomalous integer quantum Hall effect (IQHE) [Novoselov et al. (2005)] measured experimentally, a minimal conductivity at vanishing carrier concentration [Neto et al. (2009)], Kondo effect with magnetic element doping [Hentschel and Guinea (2007)], Klein tunneling in p-n junctions [Cheianov and Fal’ko (2006), Beenakker (2008)], Zitterbewegung [Katsnelson (2006)], and Schwinger pair production [Schwinger (1951); Dora and Moessner (2010)]. Although both electron-phonon coupling and photoconductivity in graphene also draws great attention [Yan et al. (2007); Satou et al. (2008); Hwang and Sarma (2008); Vasko and Ryzhii (2008); Mishchenko (2009)], the nonequilibrium behavior based on the combination of electronphonon coupling and Schwinger pair production is an …
Date: October 20, 2011
Creator: Ling, Meng-Cheieh
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Low-mass fission detector for the fission neutron spectrum measurement (open access)

Low-mass fission detector for the fission neutron spectrum measurement

For the fission neutron spectrum measurement, the neutron energy is determined in a time-of-flight experiment by the time difference between the fission event and detection of the neutron. Therefore, the neutron energy resolution is directly determined by the time resolution of both neutron and fission detectors. For the fission detection, the detector needs not only a good timing response but also the tolerance of radiation damage and high {alpha}-decay rate. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to particles, which is important for experiments with - emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. In the following sections, the description will be given for the design and performance of a new low-mass PPAC for the fission-neutron spectrum measurements at LANL.
Date: October 20, 2010
Creator: Wu, C Y; Henderson, R; Gostic, J; Haight, R C & Lee, H Y
Object Type: Report
System: The UNT Digital Library

ARRA Fuel Cell Deployment and Operation

This presentation summarizes ARRA fuel cell deployment and operation.
Date: October 20, 2010
Creator: Kurtz, J.; Wipke, K.; Sprik, S. & Ramsden, T.
Object Type: Presentation
System: The UNT Digital Library
RESULTS FOR THE THIRD QUARTER 2011 TANK 50 WAC SLURRY SAMPLE: CHEMICAL AND RADIONUCLIDE CONTAMINANT RESULTS (open access)

RESULTS FOR THE THIRD QUARTER 2011 TANK 50 WAC SLURRY SAMPLE: CHEMICAL AND RADIONUCLIDE CONTAMINANT RESULTS

The Saltstone Facility is designed and permitted to immobilize and dispose of low-level radioactive and hazardous liquid waste (salt solution) remaining from the processing of radioactive material at the Savannah River Site. Low-level waste (LLW) streams from the Effluent Treatment Project (ETP), H-Canyon, and the decontaminated salt solution product from the Actinide Removal Process/Modular Caustic Side Solvent Extraction (CSSX) Unit (ARP/MCU) process are stored in Tank 50 until the LLW can be transferred to the Saltstone Facility for treatment and disposal. The LLW must meet the specified waste acceptance criteria (WAC) before it is processed into saltstone. The specific chemical and radionuclide contaminants and their respective WAC limits are in the current Saltstone WAC. Waste Solidification Engineering (WSE) requested that Savannah River National Laboratory (SRNL) perform quarterly analysis on saltstone samples. The concentrations of chemical and radionuclide contaminants are measured to ensure the saltstone produced during each quarter is in compliance with the current WAC. This report documents the concentrations of chemical and radionuclide contaminants for the 2011 Third Quarter samples collected from Tank 50 on July 7, 2011 and discusses those results in further detail than the previously issued results report.
Date: October 20, 2011
Creator: Reigel, M.
Object Type: Report
System: The UNT Digital Library
Renewable Energy Opportunities at Fort Drum, New York (open access)

Renewable Energy Opportunities at Fort Drum, New York

This document provides an overview of renewable resource potential at Fort Drum, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Drum took place on May 4 and 5, 2010.
Date: October 20, 2010
Creator: Brown, Scott A.; Orrell, Alice C.; Solana, Amy E.; Williamson, Jennifer L.; Hand, James R.; Russo, Bryan J. et al.
Object Type: Report
System: The UNT Digital Library