Synchrotron radiation leakage from the B-factory beam pipe (open access)

Synchrotron radiation leakage from the B-factory beam pipe

The high-energy ring (HER) of the B-Factory, running at an energy of 9 GeV, generates the synchrotron spectrum when applied to a ring with the PEP bending radius. The B-Factory HER may also run at 12 GeV, producing the harder spectrum. Depending upon beam-pipe material and thickness, some of this radiation may escape and deposit energy in the surrounding material. This was originally pointed out in PEP-109 during the initial design of PEP, and subsequently verified by measurements at both PEP and PETRA at DESY. Of concern to the B Factory is magnet insulation, though other adjacent materials such as wire insulation and cooling water hoses are even more radiosensitive. Radiation damage to magnets is a function of the type of material used in the potting compound. The PEP magnets, which hopefully can be used for the high-energy ring of the B-Factory, are insulated with an epoxy composed of DER-332, DER-732, NMA and aluminum oxide. It is estimated that this epoxy compound should tolerate doses near the 10{sup 10} rad range. To summarize the results of these calculations, 0.87 cm of copper is needed at the point of maximum dose from 12-GeV operation in order to reach the dose criterion …
Date: September 20, 1990
Creator: Jenkins, T. M.; Nelson, W. R. & Ipe, N.
System: The UNT Digital Library
Elementary particle physics---Experimental (open access)

Elementary particle physics---Experimental

We are continuing a research program in high energy experimental particle physics and particle astrophysics. Studies of high energy hadronic interactions were performed using several techniques, in addition, a high energy leptoproduction experiment was continued at the Fermi National Accelerator Laboratory. We are participants in a joint US/Japan program to study nuclear interactions at energies two orders of magnitude greater than those of existing accelerators. The data are being collected with ballon-borne emulsion chambers. The properties of nuclear interactions at these high energies will reveal whether new production mechanisms come into play due to the high nuclear densities and temperatures obtained. We carried out closely related studies of hadronic interactions in emulsions exposed to high energy accelerator beams. We are members of a large international collaboration which has exposed emulsion chamber detectors to beams of {sup 32}S and {sup 16}O with energy 60 and 200 GeV/n at CERN and 15 GeV/n at Brookhaven National Laboratory. The primary objectives of this program are to determine the existence and properties of the hypothesized quark-gluon phase of matter, and its possible relation to a variety of anomalous observations. Studies of leptoproduction processes at high energies involve two separate experiments, one using the Tevatron …
Date: September 20, 1990
Creator: Lord, J.J.; Burnett, T.H. & Wilkes, R.J.
System: The UNT Digital Library