Photophysical Interactions in Vapor Synthesized and Mechanically Exfoliated Two-Dimensional Conducting Crystallites for Quantum and Optical Sensing

In the first study, superconducting 2D NbSe₂ was examined towards its prototypical demonstration as a transition-edge sensor, where photoexcitation caused a thermodynamic phase transition in NbSe₂ from the superconducting state to the normal state. The efficacy of the optical absorption was found to depend on the wavelength of the incoming radiation used, which ranged from the ultra-violet (405 nm), visible (660 nm), to the infrared (1060 nm). In the second case involving WSe₂, the UV-ozone treatment revealed the presence of localized excitonic emission in 1L WSe₂ that was robust and long-lived. Our third material platform dealt with hybrid 0D-2D ensembles based on graphene and WSe₂, specifically graphene–endohedral, WSe₂–fullerene (C₆₀), and WSe₂–Au nanoparticles, and exhibited exceptional performance gains achieved with both types of hybrid structures. Next, we investigated WSe₂ based mixed dimensional hybrids. Temperature T-dependent and wavelength λ-dependent optoelectronic transport measurements showed a shift in the spectral response of 1L WSe₂ towards the SPR peak locations of Au-Sp and Au-BP, fostered through the plexciton interactions. Models for the plexcitonic interactions are proposed that provide a framework for explaining the photoexcited hot charge carrier injection from AuNPs to WSe₂ and its influence on the carrier dynamics in these hybrid systems. Last, we …
Date: August 2022
Creator: Jayanand, Kishan
System: The UNT Digital Library

Microstructure Evolution and Mechanical Response of Material by Friction Stir Processing and Modeling

In this study, we have investigated the relationship between the process-microstructure to predict and modify the material's properties. Understanding these relationships allows the identification and correction of processing deficiencies when the desired properties are not achieved, depending on the microstructure. Hence, the co-relation between process-microstructure-properties helped reduce the number of experiments, materials & tool costs and saved much time. In the case of high entropy alloys, friction stir welding (FSW) causes improved strength due to the formation of fine grain structure and phase transformation from f.c.c to h.c.p. The phase transformation is temperature sensitive and is studied with the help of differential scanning calorimetry (DSC) to calculate the enthalpy experimentally to obtain ΔGγ→ε. The second process discussed is heat treatment causing precipitation evolution. Fundamental investigations aided in understanding the influence of strengthening precipitates on mechanical properties due to the aging kinetics – solid solution and variable artificial aging temperature and time. Finally, in the third case, the effect of FSW parameters causes the thermal profile to be generated, which significantly influences the final microstructure and weld properties. Therefore, a computational model using COMSOL Multiphysics and TC-Prisma is developed to generate the thermal profile for different weld parameters to understand its …
Date: August 2022
Creator: Gupta, Sanya
System: The UNT Digital Library

Processing-Structure-Property Correlation for Additively Manufactured Metastable High Entropy Alloy

In the present study both fusion based - laser powder bed fusion (LPBF), and solid state - additive friction stir deposition (AFSD) additive manufacturing processes were employed for the manufacturing of a metastable high entropy alloy (HEA), Fe40Mn20Co20Cr15Si5 (CS-HEA). A processing window was developed for the LPBF and AFSD processings of CS-HEA. In case of LPBF, formation of solidification related defects such as lack of fusion pores (for energy density ≤ 31.24 J/mm3) and keyhole pores (for energy density ≥ 75 J/mm3) were observed. Variation in processing conditions affected the microstructural evolution of the metastable CS-HEA; correlation between processing conditions and microstructure of the alloy is developed in the current study. The tendency to transform and twin near stress concentration sites provided excellent tensile and fatigue properties of the material despite the presence of defects in the material. Moreover, solid state nature of AFSD process avoids formation of solidification related defects. Defect free builds of CS-HEA using AFSD resulted in higher work hardening in the material. In summary, the multi-processing techniques used for CS-HEA in the present study showcase the capability of the AM process in tailoring the microstructure, i.e., grain size and phase fractions, both of which are extremely …
Date: August 2022
Creator: Agrawal, Priyanshi
System: The UNT Digital Library