4 Matching Results

Results open in a new window/tab.

Topological Conjugacy Relation on the Space of Toeplitz Subshifts (open access)

Topological Conjugacy Relation on the Space of Toeplitz Subshifts

We proved that the topological conjugacy relation on $T_1$, a subclass of Toeplitz subshifts, is hyperfinite, extending Kaya's result that the topological conjugate relation of Toeplitz subshifts with growing blocks is hyperfinite. A close concept about the topological conjugacy is the flip conjugacy, which has been broadly studied in terms of the topological full groups. Particularly, we provided an equivalent characterization on Toeplitz subshifts with single hole structure to be flip invariant.
Date: August 2022
Creator: Yu, Ping
System: The UNT Digital Library
Continuity of Hausdorff Dimension of Julia Sets of Expansive Polynomials (open access)

Continuity of Hausdorff Dimension of Julia Sets of Expansive Polynomials

This dissertation is in the area of complex dynamics, more specifically focused on the iteration of rational functions. Given a well-chosen family of rational functions, parameterized by a complex parameter, we are especially interested in regularity properties of the Hausdorff dimension of Julia sets of these polynomials considered as a function of the parameters. In this dissertation I deal with a family of polynomials of degree at least 3 depending in a holomorphic way on a parameter, focusing on the point where the dynamics and topology of the polynomials drastically change. In such a context proving continuity is quite challenging while real analyticity will most likely break. Our approach will, on the one hand, build on the existing methods of proving continuity of Hausdorff dimension, primarily based on proving continuity, in the weak* topology of measures on the Riemann sphere, of canonical conformal measures, but will also require methods which, up to my best knowledge, have not been implemented anywhere yet. Our main result gives a surprising example where the Hausdorff dimension of the Julia set is continuous in the parameter, but where the Julia set itself is not.
Date: August 2022
Creator: Wilson, Timothy Charles
System: The UNT Digital Library

The D-Variant of Transfinite Hausdorff Dimension

In this lecture we introduce a new transfinite dimension function for metric spaces which utilizes Henderson's topological D-dimension and ascribes to any metric space either an ordinal number or the symbol Ω. The construction of our function is motivated by that of Urbański's transfinite Hausdorff dimension, tHD. Henderson's dimension is a topological invariant, however, like Hausdorff dimension and tHD the function presented will be invariant under bi-Lipschitz continuous maps and generally not under homeomorphisms. We present some original results on D-dimension and build the general theory for the D-variant of transfinite Hausdorff dimension, \mathrm{t}_D\mathrm{HD}. In particular, we will show for any ordinal number α, existence of a metrizable space which has \mathrm{t}_D\mathrm{HD} greater than or equal to α and less than or equal to \omega_\tau, where τ is the least ordinal which satisfies α < \omega_\tau.
Date: May 2022
Creator: Decker, Bryce
System: The UNT Digital Library
On the Descriptive Complexity and Ramsey Measure of Sets of Oracles Separating Common Complexity Classes (open access)

On the Descriptive Complexity and Ramsey Measure of Sets of Oracles Separating Common Complexity Classes

As soon as Bennett and Gill first demonstrated that, relative to a randomly chosen oracle, P is not equal to NP with probability 1, the random oracle hypothesis began piquing the interest of mathematicians and computer scientists. This was quickly disproven in several ways, most famously in 1992 with the result that IP equals PSPACE, in spite of the classes being shown unequal with probability 1. Here, we propose what could be considered strengthening of the random oracle hypothesis, using a stricter notion of what it means for a set to be 'large'. In particular, we suggest using largeness with respect to the Ramsey forcing notion. In this new context, we demonstrate that the set of oracles separating NP and coNP is 'not small', and obtain similar results for the separation of PSPACE from PH along with the separation of NP from BQP. In a related set of results, we demonstrate that these classes are all of the same descriptive complexity. Finally we demonstrate that this strengthening of the hypothesis turns it into a sufficient condition for unrelativized relationships, at least in the three cases considered here.
Date: August 2022
Creator: Creiner, Alex
System: The UNT Digital Library