Degree Department

Ultrafast Charge Transfer in Donor-Acceptor Push-Pull Constructs (open access)

Ultrafast Charge Transfer in Donor-Acceptor Push-Pull Constructs

Ultrafast charge and electron transfer, primary events in artificial photosynthesis, are key in solar energy harvesting. This dissertation provides insight into photo-induced charge and electron transfer in the donor and acceptor constructs built using a range of donor and acceptor entities, including transition metal dichalcogenides (TMDs, molybdenum disulfide (MoS2), and tungsten disulfide (WS2)), N-doped graphene, diketopyrrolopyrrol (DPP), boron-dipyrromethene (BODIPY), benzothiadiazole (BTD), free base and metal porphyrins, zinc phthalocyanine (ZnPc), phenothiazine (PTZ), triphenylamine (TPA), ferrocene (Fc), fullerene (C60), tetracyanobutadiene (TCBD), and dicyanoquinodimethane (DCNQ). The carefully built geometries and configurations of the donor and (D), acceptor (A), with a spacer in these constructs promote intramolecular charge transfer, and intervalence charge transfer to enhance charge and electron transfer efficiencies. Steady-state UV-visible absorption spectroscopy, fluorescence and phosphorescence spectroscopies, electrochemistry (cyclic voltammetry (CV) and differential pulse voltammetry (DPV)), spectroelectrochemistry (absorption spectroscopy under controlled potential electrolysis), transient absorption spectroscopy, and quantum mechanical calculations (density functional theory, DFT) are used to probe ground and the excited state events as well as excited state charge separation resulting in cation and anion species. The current findings are useful for the increased reliance on renewable energy resources, especially solar energy.
Date: August 2022
Creator: Jang, Young Woo
System: The UNT Digital Library

The Development of the Attitudes Towards Organic Chemistry Instrument

In this study, undergraduate student attitudes towards organic chemistry and the influences that shape those attitudes were explored using the Attitudes Towards Organic Chemistry Instrument (ATOC) to collect both qualitative and quantitative data. The findings from the qualitative ATOC items provide evidence that students displayed a wide range of attitudes towards organic chemistry, including positive, negative, neutral, and blended attitudes. Five major influences were shown to have shaped these attitudes including the reputation of the course, students' educators, experiences with organic chemistry, experiences with introductory chemistry, and individual experiences. Students responses longitudinally provide evidence that their influences and attitudes change over time in the course. The findings from the quantitative ATOC items provided evidence that the data generated was valid and reliable, and a relationship was found to exist between what students think and what they had heard about the course. Limitations of this investigation, as well as implications for research and practitioners, are discussed.
Date: August 2022
Creator: Collini, Melissa Anne
System: The UNT Digital Library

Computational Investigations of Catalytic Activity by Metal-Containing Complexes

This dissertation delves into the catalytic activity of multiple metal-containing complexes with an emphasis on the activation of C–H bonds in small molecules and olefin oligomerization. The research contained in these works employs computational methodologies to better understand the thermodynamics and kinetics of the reactions. Computations can be used to quickly identify novel models and find ideal substitutions for improved catalyst design. Within this dissertation, multiple molecules of divalent and trivalent main group element-containing complexes as well as Group 13 dimetallene complexes were investigated with density functional theory (DFT) to identify their ability to activate C–H of hydrocarbons, including methane, by quantifying their thermodynamics and kinetics of reaction. With several substitutions to the base complex, improved catalysts were designed to decrease the energy barriers of the activations. Multiconfiguration self-consistent field methods were also employed to characterize the biradical character of these Group 13 compounds. Olefin oligomerization by zirconium boratabenzenes with various ancillary pendant groups was also investigated via DFT to identify the most ideal variations as well as the most likely reaction pathway.
Date: August 2022
Creator: Carter, Carly Catherine
System: The UNT Digital Library

Bifunctional Enamine‐Metal Lewis Acid Catalysis and α-Enaminones for Cyclization Reactions

The use of enamines continues to be an important tool in organic syntheses as both a catalyst and reactant. The addition of metal catalysts coupled with enamine catalysis has generated many reactions that normally would not occur separately. However, catalysts' incompatibility is an issue that we wish to solve allowing new chemistry to occur without hindrance. The use of enamines has continued to be a well-studied area of organic chemistry, but the field is ripe for different types of enamines to gain the spotlight. Enaminones are enamines with both nucleophilic and electrophilic properties. They allow reactions that are normally not possible with enamines to become obtainable. Chapter 1 is a brief introduction on enamines and the reason they gained so much attention. Then ends with enaminones and what makes them interesting reactants. Chapter 2 described a new synthesis for the tricyclic synthesis of chromanes using a novel bifunctional catalyst system of enamine-metal Lewis acid giving great yields (up to 87 %yield) and excellent stereoselectivity (up to 99 % ee). Chapter 3 covered new reactions for ring-open cyclopropane (up to 94% yield), tetrahydroquinolinones (up to 84% yield) and enantiospecific tetrahydroquinolinones (up to 84% yield and 97% ee) using α-enaminone and donor-acceptor …
Date: August 2022
Creator: Davis, Jacqkis
System: The UNT Digital Library

"You get what you pay for" vs "You can alchemize": Investigating Discovery Research Experiences in Inorganic Chemistry/Chemistry Education via an Undergraduate Instructional Laboratory

Synthesis of d10 complexes of monovalent coinage metals, copper(I) and gold(I), with dithiophosphinate/diphosphine ligands -- along with their targeted characterization and screening for inorganic or organic light emitting diodes (LEDs or OLEDs, respectively) -- represents the main scope of this dissertation's scientific contribution in inorganic and materials chemistry. Photophysical studies were undertaken to quantify the phosphorescence properties of the materials in the functional forms required for LEDs or OLEDs. Computational studies were done to gain insights into the assignment of the phosphorescent emission peaks observed. The gold(I) dinuclear complexes studied would be candidates of OLED/LED devices due to room temperature phosphorescence, visible absorption/excitation bands, and low single-digit lifetimes -- which would promote higher quantum yield at higher voltages in devices with concomitant lower roll-off efficiency. The copper(I) complexes were not suited to the OLED/LED applications but can be used for thermosensing materials. Crystallographic studies were carried to elucidate coefficients of thermal expansion of the crystal unit cell for additional usage in materials applications besides optoelectronic devices. This has uncovered yet another unplanned potential application for both copper(I) and gold(I) complexes herein, as both types have been found to surpass the literature's threshold for "colossal" thermal expansion coefficients. Two other investigations …
Date: August 2022
Creator: Bodenstedt, Kurt Wallace
System: The UNT Digital Library

Chemically Optimized Cu Etch Bath Systems for High-Density Interconnects and the FTIR Operando Exploration of the Nitrogen Reduction Reaction on a Vanadium Oxynitride Electrocatalyst

Printed circuit board manufacturing involves subtractive copper (Cu) etching where fine features are developed with a specific spatial resolution and etch profile of the Cu interconnects. A UV-Vis ATR metrology, to characterize the chemical transitions, has been developed to monitor the state of the bath by an in-situ measurement. This method provides a direct correlation of the Cu etch bath and was able to predict a 35% lower etch rate that was not predicted by the three current monitoring methods (ORP, specific gravity, and conductivity). Application of this UV-Vis ATR probe confirmed that two industrial etch baths, in identical working conditions, confirmed a difference in Cu2+ concentration by the difference of the near IR 860nm peak. The scope of this probe allowed chemically specific monitoring of the Cu etch bath to achieve a successful regeneration for repeated use. Interlayer dielectrics (ILDs) provide mechanical and electrical stability to the 3D electrical interconnects found in IC devices. It is particularly important that the structural support is created properly in the multilayered architecture to prevent the electrical cross signaling in short range distances. A combined multiple internal reflection and transmission FTIR has been employed for the characterization of silicon oxycarbonitride (SiOCN) films. These …
Date: August 2022
Creator: Caperton, Joshua M
System: The UNT Digital Library
Earth Abundant Transition Metal Catalysts for Activation and Functionalization of Light Hydrocarbons (open access)

Earth Abundant Transition Metal Catalysts for Activation and Functionalization of Light Hydrocarbons

Light hydrocarbons activations, functionalization, and reactions have been a subjects of catalysis research for decades but dominated by the rarer and more expensive noble metals. Switching over to using the more earth abundant third row transition metals could be more economical and less toxic but come with their own challenges. Their use as catalysts with light hydrocarbons could be employed better utilize and more efficiently use our hydrocarbon resources that the world still depends on.
Date: August 2022
Creator: Grumbles, William M
System: The UNT Digital Library