Resource Type

Degree Department

An approach for reliably identifying high-frequency oscillations and reducing false-positive detections (open access)

An approach for reliably identifying high-frequency oscillations and reducing false-positive detections

Article states that high-frequency oscillation (HFO), classified as ripples (80-240 Hz) and fast ripples (240-500 Hz), is regarded as a promising biomarker of epilepsy. The authors presented an integrated, multi-layered procedure capable of automatically rejecting HFOs from a variety of common false positives, such as motion, background signals, and sharp transients.
Date: September 2, 2022
Creator: Zhou, Yufeng; You, Jing; Kumar, Udaya; Weiss, Shennan A.; Bragin, Anatol; Engel Jr., Jerome et al.
Object Type: Article
System: The UNT Digital Library
Child Health and Human Development Extramural Research (open access)

Child Health and Human Development Extramural Research

Data management plan for the grant, "Child Health and Human Development Extramural Research." This study will use the genome-edited human induced pluripotent stem cell (hiPSC) with NOTCH1 knockout to recapitulate the genetic variants of NOTCH1 mutation in the Hypoplastic left heart syndrome (HLHS). It will use advances in the vascularized cardiac organoid directly differentiated from hiPSCs to replay the development and function of cardiomyocytes, endothelial cells, smooth muscle cells, and other cardiac cells in a defined 3D cell culture model by stencil-based micropatterning. It will elucidate the pathogenesis of cardiovascular underdevelopment and dysfunction found in HLHS with NOTCH1 mutation via the NOTCHDELTA/JAG ligand-receptor binding and multicellular crosstalk by single-cell RNA-seq and proteomics analysis.
Date: 2022-09-08/2025-08-31
Creator: Yang, Huaxiao
Object Type: Text
System: The UNT Digital Library
Optic-nerve-head (ONH) Chips for Glaucomatous Neurodegeneration (open access)

Optic-nerve-head (ONH) Chips for Glaucomatous Neurodegeneration

Data management plan for the grant, "Optic-nerve-head (ONH) Chips for Glaucomatous Neurodegeneration." The most prominent causative risk factor of glaucoma, the leading cause of irreversible blindness worldwide, is elevated intraocular pressure (IOP), which could deform the optic nerve head (ONH) and cause glaucomatous neurodegeneration. However, current glaucoma therapies that focus on lowering IOP do not stop vision loss effectively, and thus there is a pressing need to understand the mechanisms underlying glaucoma pathogenesis. In this project, we will develop a biomimetic 3-D ONH-on-a-chip system that closely mimics the key anatomical and pathophysiological characteristics of the native ONH to study astrocytic mechanisms of glaucoma pathogenesis, a missing link to develop efficacious therapies.
Date: 2022-09-30/2025-05-31
Creator: Yang, Yong
Object Type: Text
System: The UNT Digital Library